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ABSTRACT
Aggregated HPC resources have rigid allocation systems and pro-
gramming models which struggle to adapt to diverse and changing
workloads. Consequently, HPC systems fail to efficiently use the
large pools of unused memory and increase the utilization of idle
computing resources. Prior work attempted to increase the through-
put and efficiency of supercomputing systems through workload
co-location and resource disaggregation. However, these methods
fall short of providing a solution that can be applied to existing
systems without major hardware modifications and performance
losses. In this paper, we use the new cloud paradigm of serverless
computing to improve the utilization of supercomputers. We show
that the FaaS programmingmodel satisfies the requirements of high-
performance applications and how idle memory helps resolve cold
startup issues. We demonstrate a software resource disaggregation
approach where the co-location of functions allows idle cores and
accelerators to be utilized while retaining near-native performance.

1 INTRODUCTION
Modern HPC systems come in all shapes and sizes, with varying
computing power, accelerators, memory size, and bandwidth [51].
Yet, they all share one common characteristic: resource underuti-
lization. Past predictions showed a pessimistic research outlook:
"the goal of achieving near 100% utilization while supporting a real
parallel supercomputing workload is unrealistic" [48]. Node utiliza-
tion of supercomputer capacity varies between 80% and 94% on
different systems [49, 68, 95], with up to 75% of memory is under-
utilized as these resources are overprovisioned for workloads with
the greatest demands as can be seen in Fig. 2. A 10% decrease in
monthly utilization can lead to hundreds of thousands of dollars
of investment in unused hardware. This gap cannot be addressed
with persistent and long-running allocations. HPC operators should
incentivize users to use spare CPU cores or idle GPUs to accelerate
their applications, improving the cost and energy efficiency of the
system. To that end, users need fine-grained resource allocations and
elastic programming models.

Furthermore, heterogeinity of HPC systems is increasing over
time [51], with five more TOP500 systems using GPUs every year.
In 2019, 28% of systems had accelerators. In November 2019, seven
out of the top ten systems at TOP500 had a GPU, as did 14 out of
the top 20 [4]. However, actual GPU utilization is often quite low.
For example, on the Titan system, only 20% of the overall jobs used
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Figure 1: Software disaggregation with FaaS: increasing re-
source utilization without modifications to HPC hardware.

GPUs [87]. Furthermore, some applications that use GPUs make no
use of the CPUs on the node, reinforcing a need to co-locate GPU
and CPU jobs [51]. Resource disaggregation and job co-location are
two techniques that aim to increase system throughput and enable
fine-grained allocations.

Disaggregated resources are consolidated and allocated later
in the exact amount needed by the application (Sec. 2.2). Disag-
gregation is used for specialized hardware [61] and it can im-
prove memory’s performance–per–dollar by up to 87% [57]. While
hardware-level memory disaggregation solutions are being devel-
oped [7, 57, 70], they require dedicated hardware and have high
costs [7]. Instead, we propose a software system that does not re-
quire dedicated interconnects and extensions but runs on theHPC
systems available today.

Sharing nodes by co-located jobs improves performance, through-
put, and efficiency of HPC systems [45, 52]. However, space-sharing
by applications that simultaneously stress the same shared re-
sources leads to contention [31, 50]. Memory and I/O contention
cause a slowdown of up to three times and several orders of magni-
tude, respectively [8, 51, 89], and many supercomputing systems
disable node sharing for that reason. While job striping [14, 52]
increases performance by spreading application processes and co-
locating them with other workloads, it requires understanding the
symbiosis of co-located applications or partitioning shared sources
(Sec. 2.3). Thus, new approaches are needed to reduce performance
interference and provide multi-tenant security. With a flexible man-
agement and scheduling system, runtime adaptivity could reduce
core-hour consumption by up to 44% in some applications [46, 62].
Sadly, the evolving and malleable applications [35] achieve lower
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efficiency in the rigid systems and cause overallocation and under-
utilization.

The solution to the problems outlined above can be found inHPC-
as-a-Service [5], bringing the elasticity of cloud abstraction models
to manage and access HPC resources. One of these models could
be Function–as–a–Service (FaaS), a new paradigm that offers users
a simple method of programming stateless functions. The cloud
provider handles function invocations on dynamically allocated
resources in a serverless fashion. The fine-grained allocations with
pay–as–you–go billing could resolve the problem of runtime adap-
tivity in HPC. Yet, no work has fully embraced this cloud revolution
to improve the efficiency of existing supercomputers.

We empower users and allow them to safely reclaim and use
idle resources by-colocating workloads in isolated containers. In
this paper, using co-location as a starting point, we present the
first FaaS system that implements software disaggregation of re-
sources in a supercomputing system (Fig. 1). We show that dynamic
function placement provides a functionally equivalent solution to
disaggregated computing on homogenous resources (Fig. 3, Sec. 3).
Our system allocates functions on idle resources while requiring
changes to neither the hardware nor the operating systems. We
then define the requirements that HPC functions must fulfill to over-
come the limitations of the classical, cloud-oriented functions, and
show how a high-performance serverless platform rFaaS [24]
can be adapted to the Cray supercomputers and containerization
solutions common in HPC systems (Sec. 4). Finally, we present
an HPC-centric programming model and integration for FaaS
(Sec. 5). We use the pools of idle memory to host function sand-
boxes, reducing cold startups and increasing resource availability.
We evaluate the new system on a set of representative HPC and
FaaS benchmarks (Sec. 6). To the best of our knowledge, our work
is the first integration of FaaS into HPC applications to support
evolving and malleable jobs.

Our paper makes the following contributions:
• We introduce a novel co-location strategy for HPC work-

loads that improves system utilization and uses pools of
underutilized memory to host function sandboxes.

• We adapt a high-performance FaaS platform to supercom-
puters and demonstrate the efficiency of HPC functions.

• We present an integration of FaaS into the HPC batch sched-
uling system and the MPI programming model and show
how functions can be used to accelerate HPC applications.

2 BACKGROUND AND MOTIVATION
Serverless provides a new resource allocation paradigm that canmit-
igate the low resource utilization (Sec. 2.1). Functions can provide
a software approach to fine-grained allocations of disaggregated
resources, overcoming the disadvantages of hardware solutions
(Sec. 2.2). Functions can improve on the existing techniques and
billing systems for co-locating workloads (Sec. 2.3).

2.1 Resource Utilization in HPC
Utilization of supercomputer capacity varies between 80% and 94%
on different systems [49, 68, 95]. To assess the modern scale of the
problem, we analyzed the utilization of the Piz Daint supercomputer,
and disentangle the CPU and memory utilization in Figures 2a

and 2b, respectively. The rapid and frequent changes indicate that
resources do not stay idle long, and 70-80% of unallocated nodes
stay idle for less than 10 minutes (Fig. 2c). This gap cannot be
addressed with persistent and long-running allocations.

The aggregated and statically allocated computing nodes lead to
wasting memory and network resources [61, 64, 69]. The average
node memory usage can be as little as 24%, and 75% of jobs never uti-
lize more than 50% of on-node memory. The average network and
memory bandwidth utilization are very low, with occasional bursts
of intensive traffic [61]. The memory system contributes roughly
10-18% of the appropriation and operational expenditures [9, 98].
While turning idle memory off could decrease the static energy
consumption [69], it would also negatively affect memory paral-
lelism [64]. Additionally, the contribution of memory in energy
usage of datacenters has been decreasing in the last years [9]. Un-
fortunately, the problem of memory utilization is fundamentally not
solvable with current static allocations on homogenous resources
because these do not represent the heterogeneity of HPCworkloads.
While capacity computing applications with poor scaling require
gigabytes of memory per process, capability computing can use
less than 10% of available memory [98]. The differences between
MPI ranks and applications add further imbalance.

Heterogeinity of HPC systems is increasing over time [51], with
five more TOP500 systems using GPUs every year. In 2019, 28% of
systems had accelerators. In November 2019, seven out of the top
ten systems at TOP500 had a GPU, as did 14 out of the top 20 [4].
However, actual GPU utilization is often quite low. For example,
on the Titan system, only 20% of the overall jobs used GPUs [87].
Furthermore, some applications that use GPUs make no use of the
CPUs, reinforcing a need to co-locate GPU and CPU [51].

HPC resources are underutilized and overprovisioned. Batch
jobs cannot use the idle computing resources due to their
short availability, and the diverse workloads force node over-
provisioning.

2.2 Resource Disaggregation
Remote and disaggregated memory has been considered in data
centers for almost a decade now [7, 28, 37, 38, 57]. Disaggregation
replaces overprovisioning for the worst case with allocating for
the average consumption but retaining the ability to expand re-
sources dynamically. Remote memory has been proposed for HPC
systems [69], but it comes with a bandwidth and latency penalty.
While modern high-speed networks allow retaining near-native per-
formance in some applications [37], remote memory is considered
challenging for fault tolerance, and performance reasons [7].

Hardware-level solutions can elevate performance issues, e.g.,
by providing a dedicated high-speed network [70] and using dedi-
cated memory blades [57]. However, many methods have not been
adopted because of the major investments needed [38], such as
changes in the OS and hypervisor, explicit memory management,
or hardware support [55, 57, 57, 69]. Pricing models with dedicated
memory billing are needed to avoid throughput degradation in HPC
systems with resource disaggregation [96].

Resource disaggregation is not common in HPC because of
performance overheads and increased complexity.
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Figure 2: Piz Daint utilization for a two week period in April 2022: querying SLURM with a two minute interval.
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mantics of resource disaggregation on an unmodified system.

2.3 HPC Co-location
Co-location can help mitigate the underutilization problem by al-
lowing more than one batch job to run on the same node. While
some studies have not found a significant difference between node-
sharing and exclusive jobs [81, 90], many applications experience
performance degradation through contention in shared memory
and network resources [31, 50]. Prior work has attempted to im-
prove scheduling on a node by detecting sharing and contention in
memory bus, bandwidth, and network interface [8, 53, 56, 82, 93].
When co-locating HPC workloads, it is essential to determine opti-
mal node sharing and partition shared resources.

Node sharing Symbiotic applications can improve their perfor-
mance when co-located [14, 82, 89], but determining which work-
load pairs show positive symbiosis is hard. Methods include user
hints and offline experiments [88, 89], profiling and online monitor-
ing [8, 53, 83], and machine learning [31]. For co-location, systems
should select applications with different characteristics [52, 88, 89],
and node oversubscription can provide further benefits [45, 92]. An-
other difficulty imposed by sharing is the unfairness of traditional
billing models when applied to jobs with performance impacted
by the interference [14, 15]. Finally, sharing introduces security
vulnerabilities when tenants are not isolated. Co-located serverless
functions provide isolation with the function sandbox.

Partitioning Partitioning shared resources can reduce the ef-
fects of negative interference [91]. Last-level cache (LLC) and mem-
ory bandwidth should be partitioned since cache contention is not
the dominant factor in performance degradation [97].

Node sharing is beneficial for efficiency of HPC, as long
as it avoids harmful interference. Short functions are good
candidates for interference-aware co-location.

3 SOFTWARE DISAGGREGATIONWITH FAAS
We focus on the three resources that can be disaggregated: CPU
cores, memory, and GPUs. While targeting idle nodes is the first
step, we want to go further and handle idle resources within active
nodes. To achieve this goal, we enhance long-running jobs that
often underutilize resources when exclusively occupying nodes.
By co-locating them with short-term, flexible tasks with intensive
but complementary resource consumption, we can take advantage
of the different idle resources available. Serverless functions are
perfect for co-location: they offer fine-grained scaling, multi-tenant
isolation and are very easy to checkpoint, snapshot, and migrate.

To motivate users not to use nodes in exclusive mode, billing
is adjusted to incentivize sharing of unused processors, GPUs, or
memory. As in job striping, where users are encouraged to spread
processes across a larger number of nodes to benefit from increased
throughput, we recommend the same approach to leave at least
one core free on each node to execute remote memory and GPU
functions without introducing temporary oversubscription.

We discuss three major scenarios in which our software disag-
gregation approach mitigates resource underutilization. Scientific
applications often have constraints on the number of parallel pro-
cesses or the problem size beyond those imposed by the hardware.
For example, LULESH [43] must use a cubic number of parallel pro-
cesses. There, job configurations are unlikely to perfectly match the
available number of cores per node and offer a natural opportunity
to share the unused cores. Memory allocation grows cubically with
the size of the problem, making it unlikely that all node memory
will be used. Furthermore, the co-location of many MPI ranks ex-
ecuting LULESH application leads to contention in the memory
subsystem [21], forcing users to spread processes across nodes.

3.1 Co-location - Sharing CPUs and more

Batch job: underutilization Idle resources used by FaaS.

MEMORY MEMORYCo-locate

Functions

We improve utilization by locating FaaS executors on idle cores in
a node. Thus, our new serverless approach implements job striping,
where MPI processes do not occupy an entire node and are co-
located with other applications to better utilize resources [14, 52].

Functions can use the rest of the node’s resources while min-
imizing the performance impact on the batch application. Since
FaaS functions are easy to profile and characterize, they can be
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matched with jobs that present different resource availability pat-
terns. Even when resource consumption cannot be aligned, parti-
tioning shared memory and CPU resources can provide the fair-
ness needed for each application. Furthermore, short-running MPI
processes are similar to FaaS functions (Sec. 5.2). Adaptive MPI
implementations [20, 62] rescale applications by adding and remov-
ing processes on the fly, and new MPI ranks can be allocated in a
serverless fashion. We demonstrate the benefits of co-locating such
MPI processes with the example of the NAS benchmarks(Sec. 6.2).

3.2 Memory Sharing for Applications

MEMORY

Utilize idle memory as 
remote memory with FaaS.

Batch Job
Not enough memory.

(1) Invoke Function.

(2) RMA.
MEMORY

In HPC, the memory usage of a job varies between processes and
within the lifetime of the job, with a difference of up to 62.5x for
some applications [98]. Furthermore, applications with poor scaling
require gigabytes of memory per process, while capability comput-
ing can use less than 10% of available memory [98]. Therefore, HPC
nodes will always have overprovisioned memory to support hetero-
geneous workloads, leading to much of the memory remaining idle.
While high-memory jobs are not frequent in HPC systems, they
still need to be accommodated, requiring memory reclamation to
be short-term and ephemeral.

We propose two methods to effectively use idle node memory in
HPC applications. First, we use free memory to keep FaaS contain-
ers warm and allow functions to be started quickly and efficiently,
resolving an important issue of expensive cold starts in serverless
(Sec. 4.2). Then, we offer other jobs the ability to run remote mem-
ory functions. Functions allocate a memory block of the desired
size and expose remote memory access to idle memory, allowing
HPC applications for remote paging [69]. Modern networks pro-
vide remote memory access with acceptable latencies [38], and the
function-based approach offers fine-grained scalability with easily
controllable lifetime and multi-tenant isolation.

The function is invoked by the user application, returns the
remote memory location, and continues to run until the user ex-
plicitly terminates it. This, in turn, requires extending previous
serverless communication limitations (Sec. 4.4). However, once the
function is launched, the memory access interface is the same as in
other RDMA-based disaggregation solutions. Since we offer one-
sided remote memory access, such functions can be added to the
system with minimal CPU overhead [38], allowing many remote
memory functions to run on the same node and co-location with
compute-intensive applications such as LULESH. When the batch
system needs to reclaim idle memory, function containers can be
migrated to other nodes and swapped to the parallel filesystem.
The client library can make submitting functions seamless for the
user, with functions running either directly from warm containers
in otherwise idle memory or loaded from the swapped container if
necessary.

3.3 GPU Sharing

Co-locating GPU functions 
on idle hardware.

GPUGPU

Providing fine-grained
access to GPUs.

Offload
GPU

Operations

While the heterogeneity of HPC systems is growing, not every
application can be modified to benefit from GPU acceleration. HPC
systems should co-locate CPU-only and GPU-enabled jobs, as these
are often complementary [51]. For example, the main version of
LULESH does not use accelerators at all, instead relies on a hybrid
implementation with OpenMP and MPI.

We disaggregate GPU and CPU resources by co-locating GPU
functions. The function can be co-located with a CPU-only appli-
cation, as it requires only a single CPU core to manage device and
data transfers. Such functions can be launched with containers
specialized for HPC systems (Sec. 4.3). Furthermore, the function
can keep warm data in the device’s memory since there is no need
to evict it unless there is an incoming job or another function that
needs to use the device.

Although there exist systems for remote GPU access [30], they
add latency to each command. However, applications such as ma-
chine learning inference can consist of hundreds of kernels with
synchronization in between [86]. By running one CPU function
process to ensure GPU access, we avoid adding inter-kernel latency
in the remote GPU scenario.

3.4 Sharing Fairness
Sharing node resources introduces performance overhead caused
by interference between these shared resources. This a concern for
large-scale jobs because network and OS noise can significantly
impact the scalability of applications [27, 41, 42]. However, the
guarantee of exclusive access to on-node resources can be illu-
sive, as jobs are affected by the inter-node sharing of network
resources [13]. Thus, the disaggregation approach must consider
only the contention on node resources, as network performance
cannot be controlled by the HPC user.

Our disaggregation approach can use the existing fairness meth-
ods to minimize and compensate for performance losses associated
with resource exhaustion and co-location overheads. External per-
formance interference can be estimated [77], and dedicated pric-
ing systems compensate users for performance losses [15]. When
the application is sensitive to contention on memory resources,
partitioning can constrain the co-located workload to ensure the
proportional allocation of shared cache and bandwidth.

Furthermore, we propose that the disaggregation is applied se-
lectively to workloads, and hero jobs are exempted since they al-
locate a large fraction of the entire system and can be sensitive to
interference. Since many jobs use less than 256 nodes [49, 68], dis-
aggregation can target small and medium-scale jobs first to increase
system throughput, while not impacting scalability.
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Figure 4: Specializing serverless platform for HPC require-
ments.

Cloud FaaS HPC FaaS

Network TCP uGNI, ibverbs, AWS EFA
Sandbox Docker, microVM, unikernels Singularity, Sarus
Storage Object, block Parallel file system
Communication Storage, DB, queue Direct communication
Placement VMs, Kubernetes Batch jobs on HPC nodes

Table 1: Comparison of cloud functions environments with
HPC functions. Technologies used in specialization for Cray
machines are in bold.

4 HPC FAAS RUNTIME
Serverless computing brings an abstract view of data center re-
sources allocated on the fly by the provider and hidden from the
user. This abstraction frees users from any responsibility for pro-
visioning and allows for elastic computing, where users are billed
only for the resources used. FaaS is the dominating programming
model where users program and upload stateless functions to the
cloud. However, classical cloud functions have been designed for the
hardware and software stack common in the cloud. The situation
changes in supercomputing systems with performance-oriented ar-
chitecture and programming models. We map cloud functions into
HPC environments and identify seven major issues that serverless
faces in high-performance systems (Table 1). Based on these results,
we define requirements that HPC functions must meet to become
an efficient component of a high-performance application (Fig. 4).

rFaaS. To demonstrate how serverless functions can be used
in the HPC context, we select and extend the serverless platform
rFaaS [24]. rFaaS allows consecutive invocations to execute on the
same resource allocated with a temporary lease. Furthermore, it
employs a direct RDMA connection between the client and func-
tion executor, optimizing both the latency and the bandwidth of
serverless. However, building a portable function environment on
a supercomputing system is technically challenging, mainly due
to changing software environments and the restricted execution
model of batch jobs, designed primarily for static and long-running
applications. We demonstrate that a serverless platform can be used
even with batch systems that default towards exclusive jobs with
implicit resource assignments that execute homogeneous applica-
tions. To that end, we present a specialization of the rFaaS platform
to the Cray XC40/XC50 system Piz Daint [3].

4.1 Slow Warm Invocations
ProblemWhen an invocation of a classical function is triggered,
the payload is redirected to a selected function sandbox. Even a
warm invocation in an existing sandbox can introduce dozens of
milliseconds latency [23] due to a centralized rerouting of invoca-
tions that does not use high-speed network transport. However,
functions must have microsecond-scale latency because the over-
head of remote invocations can outweigh all benefits of computing
with additional resources (Sec. 5.1).
Solution We achieve single-digit microsecond invocation latency
by using fast networks and shortened critical path of invocation
offered by rFaaS. To deploy rFaaS on a Cray system, we use the
libfabric to target uGNI, the user network interface for Cray in-
terconnects [73]. We faced two major problems: first, the libfabric
installation within a container must be replaced with the main
system installation to achieve the high performance and manage
access to uGNI. We resolve the issue by manually mounting system
directories in the container, as the available HPC containers do not
support injection of libfabric at the runtime [58]. Then, network
interfaces such as uGNI are designed to communicate within a
single batch job, which is not the case for FaaS: client application
in one job communicates with a serverless executor running as
another batch job. To support serverless functions on the Cray sys-
tem, we implement the allocation and distribution of Cray security
credentials DRC [78].

4.2 Expensive Cold Starts
Problem When no existing sandbox can handle the invocation,
a new one is allocated and initialized with an executor process
running the user code. This cold start has a devastating effect on
performance since it adds hundreds of milliseconds to the execution
time in the best case [23, 59, 80]. Standard mitigation techniques
include lightweight and prewarmed sandboxes and faster bootup
methods [6, 29, 63], but the most common one is retaining contain-
ers for upcoming invocations. However, its effectiveness is limited
as idle containers occupy memory and are purged frequently.
Solution Instead of decreasing negative cold start effects, we focus
on reducing their frequency with the the help of unutilized node
memory. This solution is compatible with batch systems and fits
the short-term availability of resources perfectly because idle con-
tainers can be removed immediately without consequences. The
availability of CPU cores to handle invocations can be guaranteed
by modifying allocations to keep one or two cores per node (out of
the 30 or more) available. We modify the rFaaS resource manage-
ment to remember the retained containers and adjust the allocation
algorithm to target nodes with warm containers. Then, the cold
start overhead is dominated by establishing RDMA connection and
not by the expensive initialization of a new container.

4.3 Incompatible Container Systems
Problem Serverless in the cloud is dominated by Docker containers
andmicro virtual machines [6]. However, the adoption of containers
has been constrained by security concerns, and virtual machines
limit access to the accelerator and network devices. Containers must
be run in the rootless mode to avoid privilege escalation attacks.
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Docker Singularity Sarus

Image Format Docker Custom Docker-compatible
Repositories Docker registry None Docker registry
Devices support Through plugins Automatic Automatic
Resources Native, cgroup Automatic Automatic
Batch System None Slurm Slurm
MPI Support None Native Native

Table 2: Comparison of container systems for cloud and
HPC [11, 54]. Automatic resource and device support in Sin-
gularity and Sarus are done via Slurm.

To support multi-tenancy on HPC nodes, these issues must be
mitigated while retaining near-native performance.
Solution Serverless sandboxes must be tailored to the needs of
HPC functions, and we consider containers designed for scientific
computing: Singularity [54] and Sarus [11]. Both provide native
access to compute and I/O devices and integrate batch resource
management (Table 2). Furthermore, containers provide native sup-
port for high-performanceMPI installations with dynamic relinking
of containerized applications. This enhancement is essential for
HPC functions to support elastic execution of MPI processes.

4.4 Lack of a High-Performance I/O
Problem Classical serverless functions cannot accept incoming
network connections in the cloud as they operate behind the NAT
gateway. Instead, functions must resort to using persistent cloud
storage, with latencies in the tens of milliseconds, and transmitting
results back to the invoker — there is no high-performance I/O avail-
able to the functions in the data center ecosystem. However, HPC
applications can produce terabytes of data, and in such applications,
the transmission of results from a function to the invoking MPI
process quickly becomes impractical. HPC applications need high-
performance I/O operations that are offered through the scalable
parallel filesystem [10], thus replacing the need for cloud storage.
Furthermore, this environment is too restricted for remote memory
functions that accept incoming connections and return the memory
buffer information to the user without ending the invocation.
Solution First, we make the HPC parallel filesystem accessible by
mounting high–performance partitions and allowing the function
to access the user’s data. These allow the creation of persistent
artifacts of function invocations, communicate large amounts of
data between invocations, and bring serverless performance in line
with what is expected of HPC applications. Then, we enhance the
rFaaS invocation protocol with a portable interface for functions
to start communication, accept incoming connections and return
data without terminating the invocation, allowing HPC users to
implement functionalities that do not fit the classical cloud model,
such as serving remote memory to clients.

4.5 Incompatible Resource Management
Problem Serverless platforms support the allocation of CPU cores,
and memory is allocated proportionally to CPU resources [1, 2].
However, software disaggregation techniques require large alloca-
tions of one hardware resource while not using another one ex-
tensively. Furthermore, using cluster resources requires two basic
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Batch SchedulerHPC System schedule 
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rFaaS Manager
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Figure 5: Co-location made easy: rFaaS functions running on
batch-managed clusters.

functionalities: a release of nodes for FaaS processing and removal
of executors from the serverless resource pool.
Solution First, we extend the rFaaS resource management protocol
with memory and GPU device availability. Computing and memory
resources are allocated and billed independently: users configure
memory size according to their needs and can add a GPU device.
Since we are operating on reclaimed idle resources, there is no mon-
etary loss coming from partial resource consumption by functions:
every single allocation is an increase in system utilization.

Then, we implement an interface in rFaaS designed for inte-
gration with cluster job management systems (Fig. 5). The global
resource manager offers a single REST API call to register resources
(B1), which are used it immediately, supporting allocations on the
spare capacity available only for a very short time (Fig. 2). Released
resources include CPU cores, memory, and GPUs that have not
been explicitly allocated by the tenant. Thus, the allocation pol-
icy becomes opt-in - resources not requested by the user are not
assigned by default to their jobs.

Furthermore, we allow the batch manager to retrieve resources
for batch jobs with higher priority. Batch systems use the REST
API to send the remove call with a parameter describing the al-
lowed time for resource deallocation (B2). When the request is
immediate (no additional computing time is allowed), all active
function invocations are aborted, and termination replies are sent
to clients. Otherwise, active invocations might be allowed to finish
the computation, but no further invocations will be granted.

5 HPC FAAS PROGRAMMING MODEL
Serverless computing provides a performance boost through idle
resources, but it needs model-driven incorporation into HPC appli-
cations. First, we propose to use fine-grained invocations to offload
computations (Sec. 5.1). The guiding principle – the application
never waits for remote invocations to finish – is achieved by di-
viding the work so that the network transport and computation
times are hidden by local work. Consequently, the low-latency in-
vocations are critical for such tasks, and latency plays a role in
deciding what can be safely offloaded to a function. Second, we
propose to run MPI applications as functions, providing a backend
for short-running computations on idle hardware (Sec. 5.2).
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5.1 Integration
We use an analytical model to estimate the overheads of rFaaS
invocations, based on prior work on the LogP [26] and LogfP [40]
models. The network performance is expressed with parameters
such as latency, CPU overhead on the sender and receiver, and
gap factor. By learning the network parameters, estimating the
remote function execution time, andmeasuring the rFaaS overheads
(Sec. 6.1), we model the round-trip invocation time.

We design a model to decide when remote invocations can be
integrated into HPC applications, and then show how to use rFaaS
as an accelerator for HPC problems. The model is applied to each
offloaded task separately to support the varying computational
and I/O requirements of heterogeneous applications. We provide
examples of applications and benchmarks that are either a natural
fit or can be adapted to use serverless offloading. This list is not
exhaustive but provides an intuition on using rFaaS efficiently in
practice.

Massively parallel applications. These applications are extremely
malleable and can efficiently offload tasks as functions. A solver for
the Black-Scholes equation [39] is a good example, as it generates
many independent tasks with comparable runtime. Assuming that
we want to achieve the best possible performance, we measure the
runtime of one task 𝑇𝑙𝑜𝑐𝑎𝑙 and then compare this to the runtime
𝑇𝑖𝑛𝑣 of one invocation using rFaaS, to which we add the round-trip
network time 𝐿. Time 𝑇𝑙𝑜𝑐𝑎𝑙 can be obtained with offline profiling
tools common in performance modeling workflows [17, 21], provid-
ing measurements and models for runtime decisions without the
overhead of additional invocations. There exists a number 𝑁𝑙𝑜𝑐𝑎𝑙

of tasks such that:
𝑁𝑙𝑜𝑐𝑎𝑙 ·𝑇𝑙𝑜𝑐𝑎𝑙 ≥ 𝑇𝑖𝑛𝑣 + 𝐿 (1)

Therefore, if the number of tasks is greater than 𝑁𝑙𝑜𝑐𝑎𝑙 , up to
𝑁𝑟𝑒𝑚𝑜𝑡𝑒 tasks can be computed remotely without incurring any
waiting time. 𝑁𝑟𝑒𝑚𝑜𝑡𝑒 is determined as the number of tasks nec-
essary to saturate the available bandwidth 𝐵: 𝐵

𝐷𝑎𝑡𝑎𝑖𝑛𝑣
. Therefore,

the throughput of the system only depends on the network link
bandwidth and the amount of work available.

Task-based applications with no sharing within tasks. Task depen-
dency graph [79] specifies the order of execution and dependencies
between tasks in a program, which can be offloaded using the guide-
line in Eq. 1. However, the number of tasks that can be offloaded
depends on the width of the task dependency graph - the wider the
graph, the more parallelism is exposed, and therefore, more tasks
can be transferred to rFaaS. As an example, we consider the prefix
scan in electron microscopy image registration [22]. The width of
the task graph in a distributed scan varies significantly between pro-
gram phases; thus, dynamic serverless offloading achieves higher
efficiency than a static resource allocation.

5.2 MPI Functions
An HPC function can implement the same computation and com-
munication logic as an MPI process. These can be allocated with
lower provisioning latency than through a batch system, and use
computing resources with short-time availability. When running
in a sandbox, serverless functions can execute on a multi-tenant

node, resolving one of the major security concerns that prevent
node sharing in a production system. In the HPC context, FaaS can
be more than just a backend for website and database functionali-
ties; functions can represent full-fledged computations that involve
communication and synchronization.

A further benefit can be provided with support for adaptive MPI
implementations. These usually require infrastructure extensions
to support elastic scaling [18, 20]. Instead, new MPI ranks can be
scheduled as functions without going through the batch system. In
HPC, FaaS brings low bootup times and flexible resource manage-
ment to evolving and malleable jobs [35], desired traits to scale up
in the application phase with adaptive parallelism.

6 CASE STUDIES
We evaluate our HPC software disaggregation approach in three
steps, attempting to answer the following questions:

(1) Can rFaaS offer low-latency invocations needed for HPC
disaggregation?

(2) What is the overhead of co-locating functions and batch
jobs?

(3) Can disaggregation improve system utilizaton?
(4) Can HPC applications on a supercomputer benefit from

serverless acceleration with rFaaS?
Before answering these questions, we first summarize our experi-
mental setup.

Ault. We deploy rFaaS in a cluster and execute the benchmark
code on nodes each with two 18-core Intel Xeon Gold 6154 CPU
@ 3.00GHz and 377 GB of memory. We use Docker 20.10.5 with
executor image ubuntu:20.04, and our software is implemented
in C++, using g++ 10.2, and OpenMPI 4.1.

Daint. We deploy CPU and GPU co-location jobs on the super-
computing system Piz Daint [3]. The multi-core nodes have two
18-core Intel Xeon E5-2695 v4 @ 2.10GHz and 128 GB of memory.
The GPU nodes have one 12-core Intel Xeon E5-2690 v3 @ 2.60GHz
with 64 GB of memory, and a NVIDIA Tesla P100 GPU. All nodes are
connected with the Cray Aries interconnect, and we implement a
new backend in rFaaS with libfabrics to target the uGNI network
communication library. We use Clang 12 and Cray MPICH. The
current billing mode for Daint works at the level of entire nodes.
Moving forward, a billing model at the granularity of individual
cores would both incentivize users to only allocate the resources
they require and allow multiple tenants to share nodes.

6.1 rFaaS on Cray Systems
To evaluate whether rFaaS provides the low-latency invocations
needed in HPC (Sec. 4.1) wemeasure the round-trip time of function
invocations on Piz Daint. We use the libfabrics backend that
supports the uGNI provider for Cray systems. We evaluate a no-op
function with different sizes of input and output data. We test the
warm invocations that use non-busy waiting methods that have
lower CPU overhead at the cost of increased latency, and the hot
invocations that process invocations faster by continuously polling
for new work.

We compare rFaaS using warm and hot using queue wait and
busy polling methods, and show the results in Fig. 6. While warm
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Figure 6: Latency of rFaaS and libfabric in different configu-
rations. The straight lines represent the median value, while
the dotted line represents the 95th percentile. The plot uses
a logarithmic scale.

executors need more time to respond and are thus slower than the
queue wait approach, the hot executions have comparable median
performance to libfabric busy polling and even display a more stable
behavior with fewer outliers.

rFaaS provides invocations that are fast enough for the inte-
gration of functions into HPC applications.

6.2 Co-location
CPU Sharing. To evaluate the overhead of co-locating applica-
tions by sharing CPUs, we use the LULESH [43] and MILC [12]
applications as a classical batch job, using 64 MPI processes and
various problem sizes. We deploy LULESH on 2 Piz Daint nodes,
using 32 out of the 36 available cores. It’s important to note that
LULESH can only run using a cubic number of processes, e.g., 8,
27, 64, 125, etc. Therefore, using all cores of a node is impossible in
many configurations. Then, we run concurrently NAS benchmarks
in the Sarus container on the remaining cores, using CPU binding
of tasks. Many NAS benchmark applications have a short runtime
and thus represent a FaaS-like workload in HPC. We run NAS with
1, 2, 4, and 8 MPI processes, spread equally across two nodes, and
launch new executions as soon as the previous ones finish.

Fig. 7 shows that the impact of co-location on the batch job with
this workload is negligible, with changes in LULESH performance
explained by the measurement noise. More importantly, only re-
questing 32 out of 36 cores on each node translates to a core-hour
cost reduction of ≈ 11%, more than offsetting any impact of co-
location.We evaluate the increased system utilization by comparing
our co-location with two other scenarios: a realistic exclusive node
allocation and an ideali allocation where small-scale jobs execute
exclusively but are billed for used cores only. Figure 8 demonstrates
significant utilization improvements of up to 52%.

While the performance loss on the function container is higher,
it is not a limitation as HPC functions effectively provide users with
a way to use resources that would otherwise be wasted: comput-
ing a co-located FaaS-like application is free, and the only cost is
performance overhead. We also propose that the cost of running
co-located rFaaS jobs should be lower than that of classical batch

(BT, A, 4) (BT, W, 1) (CG, B, 8) (EP, B, 2) (LU, A, 4) (MG, W, 1)
Co-located NAS benchmark - application and input size.

4

2

0

2

4

6

Ov
er

he
ad

 [%
].

Baseline LULESH execution times: 40.6, 77.6, 119, 292 seconds.

Slowdown of the batch job LULESH.
LULESH problem size

15
18

20
25

(a) Slowdown of the LULESH batch job.

(BT, A, 4) (BT, W, 1) (CG, B, 8) (EP, B, 2) (LU, A, 4) (MG, W, 1)
Co-located NAS benchmark - application and input size.

40

20

0

20

40

Ov
er

he
ad

 [%
].

Baseline execution times: 12.3, 2, 7.2, 9.4, 6.8, 0.13 seconds.

Slowdown of the co-located FaaS-like MPI application.

(b) Slowdown of the FaaS-like MPI application co-located with LULESH.

(BT, A, 4) (BT, W, 1) (CG, B, 8) (EP, B, 2) (LU, A, 4) (MG, W, 1)
Co-located NAS benchmark - application and input size.

10
5
0
5

10
15
20

Ov
er

he
ad

 [%
].

Baseline MILC execution times: 87.2, 169, 288.4, 409.5 seconds.

Slowdown of the batch job MILC. MILC problem size
96 128

(c) Slowdown of the MILC batch job.

Figure 7: Overheads of batch jobs co-located with FaaS-like
jobs sharing CPUs on idle cores, reportedmeanwith standard
deviation over ten repetitions.
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Figure 8: System utilization of co-located execution, a par-
tially co-located execution, and a standard exclusive node
allocation.

jobs to incentivize reclaiming these resources and to offset the fact
that such jobs have lower priority and might be preempted.
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Figure 9: Overhead of batch jobs co-located with rFaaS func-
tions providing remote memory. Reported mean with stan-
dard deviation over ten repetitions.

Memory Sharing. We evaluate the impact of allowing rFaaS
to use idle memory. On the Ault system, we run LULESH using
27 and 125 cores, and MILC using 32 cores out of 36 available
cores. We deploy rFaaS with the remote memory function setup in
a Docker container. The rFaaS function allocates 1 GB of pinned
memory available for RDMA operations, and returns the buffer
data to the owner. While running LULESH and MILC, we perform
RDMA read and write operations of 10 MB repeatedly with different
intervals between repetitions to test how additional traffic affects
performance (Fig. 9). The results show that LULESH is not sensitive
to the variable perturbation, regardless of problem size, while MILC
is more sensitive at larger problem sizes. When scaling LULESH to
multiple nodes, the overall runtime of the job is affected minimally,
proving that compute-intensive applications can share network
bandwidth to improve the overall system throughput. Interestingly,
the rate at which data is read or written does not affect performance
even when adding 10GB/s of traffic to the system.

GPU Sharing. We also run the GPU version of LULESH and
MILC on three GPU nodes of the Piz Daint system using 27 ranks
and 9 cores out of the 12 available on each node for LULESH and
32 ranks (divided as 11, 11, and 10 cores) for MILC. Then, we run
Rodinia GPU benchmarks [19] in a Sarus container (Fig. 10). These
benchmarks simulate GPU functions as each only takes a few hun-
dred milliseconds. The overall overhead remains very low (< 5%),
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Figure 10: Overheads of batch jobs sharing node with GPU
applications. Reported mean with standard deviation.

with the exception of two outliers (6.1% and 10.5%) – both encoun-
tered only for the smallest problem size of LULESH. However, only
requesting 9 out of 12 cores on each GPU translates to a core-hour
cost reduction of 25%, yet again more than offsetting any impact
of co-location. For MILC, the overhead is slightly higher, with the
smaller problem sizes experiencing a stronger perturbation.

Co-locating batch jobs with rFaaS functions and FaaS-like
HPC workloads does not introduce significant overheads in
batch jobs, regardless of the resource being shared. Allocat-
ing only required resources leads to an overall reduction in
costs for batch jobs, even taking co-location overheads into
account.

6.3 HPC Integration
To prove that offloading computations to HPC functions in rFaaS
offers performance competitive to that of parallel applications, we
integrate HPC functions into OpenMP benchmarks executed on
the Piz Daint supercomputer and the Ault cluster. We compare
the runtimes of benchmarks using OpenMP parallelism with runs
where the amount of resources has been doubled by allocating
one function to each rank and process. Thus, we verify whether
applications can be accelerated by offloading computations to cheap
idle resources while constrained by the network bandwidth.

Thus, functions with a good ratio of computation to unique
memory accesses can be accelerated with serverless functions, even
if they require transmitting large inputs.

6.3.1 Use-case: Black-Scholes simulation. Figure 11a demonstrates
an OpenMP Black-Scholes benchmark from the PARSEC suite mod-
ified to use rFaaS offloading. The serial execution takes 726 mil-
liseconds on an input of 229 MB. We compare the OpenMP version
against complete remote executionwith rFaaS, and against doubling
parallel resources with cheap serverless allocation. The application
demonstrates that parallel computations can be efficiently offloaded
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Figure 11: rFaaS in practice, reported medians with non-
parametric 95% CIs.

until network saturation is reached and that HPC functions im-
provemultithreaded applications withmillisecond-scale run-
time.

6.3.2 Use-case: OpenMC. Figure 11b and Figure 11c demonstrate
OpenMC [76], a Monte Carlo particle transport code modified to
use rFaaS offloading by adding 180 lines of code. We execute the
opr benchmark [34] modeling an Optimized Power Reactor for the
input configurations of simulating 1,000 and 10,000 particles on
nodes with two AMD EPYC 7742 64-Core Processor @ 2.25GHz
and 256 GB of memory each. Both configurations read an input
of 410.8 MB which is loaded from the parallel filesystem by both
functions and the client. We compare the OpenMP version against
complete remote execution with rFaaS, and against doubling par-
allel resources with cheap serverless allocation. The application
demonstrates thatHPC functions can improve real-world HPC
applications.

7 RELATEDWORK
Resource Underutilization. Snavely et al. [14] proposed node shar-

ing with co-location of applications with compatible resource con-
sumption patterns. However, the detection and avoidance of perfor-
mance interference is a major issue and requires changes to pricing
models [15], batch systems, and schedulers [15, 36, 66, 84]. Instead,
we propose a decentralized approach with fine-grained functions
that does not require changes in batch systems and online monitor-
ing for interference. Finally, idle memory in an HPC system can be
used to duplicate memory contents for higher throughput [65].

Elastic MPI. Adaptive and elastic MPI frameworks implement
restarting applications with different numbers of processes [75],
reconfiguration frameworks [60], processor virtualization [44], and
checkpoitingwithmigration [25, 32, 33]. In contrast, functions bring
a dynamic acceleration of MPI programs with resources allocated
on-the-fly, and require neither restarting nor reconfiguring the MPI
program to incorporate new resources.

Supporting malleable and evolving applications requires changes
in schedulers and batch systems [18, 71, 72], and MPI extensions
are needed to extend and shrink the number of processes [20].
Serverless functions can implement malleable and evolving jobs
with high resource availability.

8 DISCUSSION
This paper proposes a functionally equivalent alternative to hard-
ware resource disaggregation, achieved by co-locating a serverless
platform with classical HPC batch jobs. In the following, we discuss
several questions our approach raises.

How does our solution differ from cloud functions? While
exploring secure multi-tenancy via serverless techniques is already
new in the context of HPC, we go beyond that: we use co-location
only as the starting point and leverage rFaaS to allow the different
resource subsets to be accessed separately. Furthermore, unlike
the multi-tenant co-location of functions in a cloud, we focus on
providing access to different resource categories in the existing
node model of an HPC data center.

What are the limitations imposed by rFaaS? The program-
ming model in rFaaS is focused on offloading tasks to elastic ex-
ecutors, similarly to many other serverless approaches to parallel
computing [47, 67, 85]. Our software disaggregation solution re-
lies on having enough network bandwidth available to move tasks
without incurring significant delays, as these reduce the benefits of
parallelization (Sec. 5). Furthermore, MPI applications are adopted
to support offloading to remote workers, a challenge faced by all
applications that wish to use FaaS methods.

Can software disaggregation stay competitive against hard-
ware solutions? Our approach can be used with off-the-shelf hard-
ware and does not incur additional costs associated with hardware
disaggregation. Furthermore, there is zero penalty for running an
unmodified HPC application on an aggregated system, whereas
disaggregation always adds latency to reach remote resources. Al-
though emerging hardware disaggregation technologies can offer
nanosecond-scale latency for remote memory access, the higher
latency of remote memory in software disaggregation still can
increase system throughput. Many high-performance cloud appli-
cations benefit from remote memory [37, 38, 74], indicating that a



Software Resource Disaggregation for HPC with Serverless Computing

software-based approach that does not require a dedicated inter-
connect can offer competitive performance at lower costs.

Which applications benefit from co-location?We demon-
strate on two representative HPC applications that software disag-
gregation increases the system’s utilization thanks to tolerable per-
formance overheads. However, co-location has been shown to cause
only minor slowdowns and increase overall system throughput in
many HPC applications, including memory-bound and network-
sensitive workloads [14, 16, 36, 84, 94, 99]. In addition, they can
take advantage of job striping and spreading [14, 84] that can be
realized in our system due to the reduced costs of under-allocation.

9 CONCLUSIONS
HPC suffers from underutilization since many systems do not have
access to hardware resource disaggregation. Therefore, we pro-
pose a software disaggregation approach to efficiently co-locate
long-running batch jobs with serverless functions. We design tar-
geted FaaS approaches for the three main domains of software
disaggregation: idle processors, memory, and accelerators. Using
a high-performance serverless platform, we demonstrate that the
co-location of such workloads allows HPC users to benefit from re-
claimed resources while minimizing performance losses, improving
system throughput by up to 53% and supporting remote memory
with up to 1GB/s traffic without negligible performance overheads.
Finally, we provide users with a path to use the reclaimed resources
to accelerate MPI and OpenMP applications.
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