
OSMOSIS: Enabling High-Performance, Multi-Tenant SmartNICs
in Datacenter Systems

Mikhail Khalilov1, Marcin Chrapek1, Siyuan Shen1, Alessandro Vezzu1, Thomas Benz2,
Salvatore Di Girolamo1, Timo Schneider1, Daniele Di Sensi1,3,

Luca Benini2, and Torsten Hoefler1

1SPCL, D-INFK, ETH Zurich
2IIS, D-ITET, ETH Zurich

3Department of Computer Science, Sapienza University of Rome

Abstract

SmartNICs play a crucial role in driving innovation in dat-
acenter networking. SmartNICs effectively reduce latency
and jitter associated with packet delivery and host CPU pro-
cessing by placing energy-efficient programmable cores close
to the network link. Deploying SmartNICs in a datacenter
context with support for multiple tenants is essential for un-
leashing their computing capabilities. Yet, as our systematic
analysis in this work shows, the resource multiplexing lim-
itations of existing on-path SmartNIC designs lead to the
lack of multi-tenancy capabilities such as performance iso-
lation and QoS provisioning of compute and IO resources.
SmartNIC unpredictable kernel execution times, compared
to standard predictable NIC datapaths, make conventional
multi-tenant approaches untenable. We address these limi-
tations by proposing OSMOSIS, a control plane co-design
for datacenter SmartNICs. OSMOSIS extends existing OS
mechanisms to enable SmartNIC-aware QoS management on
top of the scalable packet processing hardware data plane. We
implement OSMOSIS within an open-source RISC-V-based
on-path SmartNIC. Our performance results demonstrate that
OSMOSIS fully supports multi-tenancy and enables broader
adoption of SmartNICs in cloud datacenters with low over-
head.

1 Introduction

Network data plane design has undergone two decades
of exciting research, leading to the achievement of sub-
microsecond packet processing host latency [7, 18, 26, 29,
34, 35, 51, 53]. SmartNICs (sNICs) have further improved
processing times by enabling direct in-network packet pro-
cessing, thereby reducing data movement [32]. sNICs started
a trend in datacenter networking acceleration [49, 63] similar
to the GPU trend in high-performance computing [64].

sNICs enable running kernels on programmable, energy-
efficient cores tailored for packet processing and integrated
within the host network interface card (NIC) System-on-Chip

Network Host

PUs

data path

Conventional
NIC path

sNIC path

DMA read/write

Egress send
NIC

packets
compute

Non deterministic work

Deterministic work

Figure 1: An overview of a typical NIC datapath with a pre-
dictable amount of work compared with the unpredictable
nature of kernel sNIC evaluation.

(SoC). These cores are attached directly (i.e., on-path) to the
datacenter Ethernet or InfiniBand link [5, 39]. Such a design
reduces the latency of some applications since the sNIC can
process the packets in the network [42] and reply directly
without moving the packets to/from the host OS networking
stack [1, 23]. For example, machine learning gradients can be
summed on the sNIC without the involvement of the host [64].
sNICs can also be used to accelerate datacenter disaggregation
[20,45], storage [22,45,46], Key-Value Stores (KVS) [52,62],
compute [41], client Remote Procedure Calls (RPCs) [9, 45,
68], the network stack [9, 47, 68, 69] and telemetry [30].

Resources in a modern datacenter are flexibly multiplexed
between multiple tenants. However, user code processing in
the network enabled by sNICs brings a set of considerable
resource management issues. As Figure 1 shows, NICs have
three resources that must be mutiplexed: compute, DMA,
and egress. The traditional NIC datapath only forwards pack-
ets to host memory and executes simple operations with a
predictable and bounded complexity. Typically, the number
of incoming bytes equals the number of outcoming bytes,
and NIC does not conduct any elaborate processing on them.
In contrast, sNICs are executing unpredictably complex ker-
nels dependent on the received packets and application needs.
For example, Allreduce, heavily used in machine learning, is
compute-bound as it requires operations on the provided data,

while key-value store (KVS) is DMA bound by accesses to
the host memory. sNICs need to operate on uncoordinated,
non-deterministic, and concurrent data streams while meeting
Service Level Objective (SLO) policies set by the administra-
tor.

Achieving a fair multiplexing of resources for sNICs is
challenging. sNICs combine an accelerator, such as a GPU,
and a traditional NIC. While this provides the aforementioned
benefits, the resource management of neither is directly ap-
plicable due to the unique requirements of sNICs (Section 3).
Conventional RDMA NICs (rNICs) which have bounded and
predictable workloads (e.g., atomics, scatter-gather RDMA
reads/writes) usually use link bandwidth allocation as a "just
enough" mechanism for resource isolation and Quality-of-
Service (QoS) between tenants. While bounded and pre-
dictable, unlike in the sNIC case, even for rNICs, fairness
is hard to obtain [66]. Compute accelerators are external host
devices like sNICs. However, they are controlled entirely by
the host OS, which manages all running kernels [36, 37] and
does not generate or receive events other than commands from
accelerated applications. sNICs can execute arbitrary kernels
without the involvement of the host.

Furthermore, for sNICs to sustain the sub-nanosecond
packet arrival intervals at fully utilized 400Gbit/s link (Sec-
tion 3, [19]), resource multiplexing must be conducted fast.
On-path sNICs have much stricter compute and buffering
constraints than traditional NICs and accelerators due to the
packet rate and the three multiplexed resources (compute,
DMA, and egress). This issue is even more critical as network
rates constantly increase, and are expected to exceed Terabit
per second speeds by 2025 [10, 16].

A common approach to effectively manage processing at
high packet arrival rates would be implementing resource
management in hardware [2, 4, 19]. This is usually accom-
plished through scheduling policies such as Weighted Round
Robin (WRR), which divide link bandwidth among ten-
ants [13, 14, 66]. However, because sNICs have varying appli-
cation kernel requirements, incorporating WRR for compute
resource allocation can lead to unfairness. For example, as
we show in Section 3, if one application like Allreduce is
compute-bound and takes twice as much compute time than
a non-compute bound application like KVS, the compute-
bound application will be able to process twice as many bytes.
Other recently proposed methods for compute isolation in
sNICs are not optimal for all scenarios as they either are non-
work conserving [21] or rely on the host CPU as a fallback
mechanism [41].

We tackle these by introducing OSMOSIS (Operating
System Support for Streaming In-Network Processing) (Sec-
tion 4), a light-weight sNIC management layer that sepa-
rates the performance-critical data-plane implemented in hard-
ware and the non-critical management tasks implemented in
flexible software control-plane. OSMOSIS is a fair, work-
conserving sNIC resource manager that requires minimal

hardware footprint and employs expressive yet simple Ser-
vice Level Objective (SLO) semantics.

In OSMOSIS, the sNIC is exposed to a tenant as Single-
Root Input/Output Virtualization (SR-IOV) Virtual Function
(VF). This allows the administrator to allocate proportionally
more interconnect, compute, and memory resources to VFs
associated with high-priority tenants. OSMOSIS achieves fair
resource allocation and tenant isolation.

We implement (Section 5) and evaluate (Section 6) OS-
MOSIS on top of one of the available open-source on-path
sNIC architectures, PsPIN [12, 24], based on energy-efficient
silicon-proven RISC-V cores. In our setup, PsPIN is the hard-
ware backbone for packet processing using kernels written in
C. Our performance evaluation focuses on typical datacenter
workloads, such as Key-Value Store (KVS), storage IO and
in-network Allreduce. OSMOSIS provides comprehensive
support for multi-tenancy without sacrificing performance.

In summary, we make the following contributions.

1. sNIC multi-tenancy: We show the typical multi-tenancy
sNIC problems in detail and define requirements for
high-performance sNICs serving as a guideline for de-
veloping sNICs that can meet the needs of diverse work-
loads and tenant environments (Section 3).

2. OSMOSIS: We introduce OSMOSIS, a lightweight sNIC
resource manager based on a set of fair and work-
conserving scheduling policies. OSMOSIS is a minimal
hardware footprint solution to the aforementioned prob-
lem of fair and fast resource multiplexing within sNICs
in a multi-tenant environment with varying application
requirements (Section 4).

3. Evaluation: We implement OSMOSIS within a RISC-
V-based on-path sNIC architecture that supports packet
processing at 400Gbit/s and extend it by the necessary
schedulers and the prototype of a control path infrastruc-
ture (Section 5). We use this implementation to verify
and evaluate OSMOSIS. We show how it solves the de-
fined sNIC problems and how it fairly and with minimal
tail latency overhead handles multi-tenant applications
with varying resource requirements (Section 6).

2 Background and Related Work

From the system’s perspective, we abstract out the sNIC as
a packet processing accelerator located between the network
fabric and the host CPU, GPU, or FPGA. It can handle vari-
ous operations, including communication, gradient reduction
offloading for DNN training (in-network Allreduce [64]), and
storage (IO reads/writes [45]). Existing sNICs can be classi-
fied broadly into two categories: off-path and on-path [41].

Off-path sNICs add a full CPU complex to the network
card, often running a full operating system (e.g., Linux). This
design enables a management plane based on receive side

2

Compute Egress
OSMOSIS

Memory DMA enginePUs

N
et

w
or

k

DMA

In
gr

es
s

schedulers

H
os

t

On-path sNICEgress

Figure 2: Schematic overview of on-path sNIC architectures.

scaling (RSS) to be conveniently implemented [7, 44, 53].
However, they often suffer from lower performance in terms
of latency, bandwidth, and packet processing rates due to their
system design, which closely resembles the host architecture
(e.g., Broadcom Stingray and Nvidia Bluefield both feature
CPU SoCs with PCIe and DRAM) (Table 1).

On-path sNICs share packet input buffers with processing
units (PUs) tailored for packet processing (e.g., LiquidIO [43],
Netronome [49], Bluefield-3 DPA [50], PsPIN [12]). On-path
sNICs typically provide programming API for writing ker-
nels that process traffic on PUs, either on per-packet (sPIN)
or per-message granularity (Bluefield-3 FlexIO API [50],
nanoPU [29]). PUs typically feature three layers of the mem-
ory hierarchy, e.g., L1 single-cycle access scratchpad, L2
memory with access latency of 15-50 cycles, and host side
memory (either off-path SoC or host CPU memory). L1 and
L2 memories could be organized as multi-level caches (e.g.,
LiquidIO) or be explicitly managed by the user (e.g., PsPIN).

OSMOSIS provides a solution to a fair resource multiplex-
ing for sNICs in a multi-tenant context and is not specific
to any system. However, to showcase the identified issues,
and verify and evaluate the overhead of OSMOSIS, we se-
lected one of the possible open-source sNIC implementa-
tions available in the literature. We decided to use an on-path
sNIC as our experiments (Table 1) show that only such sNICs
can sustain the processing at the emerging line rates. We se-
lected PsPIN as the underlying sNIC. PsPIN is open-source,
based on energy-efficient silicon-proven RISC-V cores, and
allows the users much more granular memory access than
other implementations stretching the resource management
more. PsPIN is also unique because it can be synthesized to
real hardware running at the frequency of 1GHz. OSMOSIS
could have been equivalently implemented in any other sNIC
framework [43, 49, 50].

2.1 Challenges of Resource Isolation

We generalize on-path sNIC architecture in Figure 2. Packets
arrive at the sNIC inbound engine 1 and are initially stored
at the L2 packet buffer with a per-application first-in-first-out
(FIFO) queue semantics. Next 2 , packets are scheduled for
processing on available PUs where kernel execution is initi-

ated 3 . Kernels execute using three resources, PUs, DMA,
and Egress engines. Depending on the application needs, these
may be used more or less (e.g., compute- or IO-bound). In
general, these resources can be used, for example, as follows:

3 PUs: computing (e.g, packet header hashes or summing
values in an Allreduce reduction);

4 Direct Memory Access (DMA) engine: transferring data
through one of the interconnects to read/write in sNIC
memory (e.g., KVS-cache in sNIC L2 memory) or host
memory (e.g., KVS cold storage);

5 sNIC egress engine: sending packet replies (e.g., reply
with data from IO read or value from KVS cache).

Metrics to measure the quality of resource multiplexing
by datacenter tenants, known as Service-Level Objectives
(SLOs), are typically tied to the conventional NIC path dis-
played in Figure 2 by considering tail latency [11] and
throughput [48, 59]. However, these SLOs do not consider
the sNIC datapath with its unique resource multiplexing. Tail
latency of DMA over host interconnect, PU time, and buffer
space should be considered. Existing proposals have only par-
tially addressed this issue through the support of performance
isolation mechanisms, such as multi-level packet schedul-
ing [19, 41, 61] and static resource allocation [21] within the
shared components of a system such as processing cores and
DMA engines. Yet, because of the dynamic and unpredictable
nature of the kernels and packet flows, static assignments
do not solve the problem. OSMOSIS addresses this gap by
providing bounded guarantees for the availability of sNIC
resources to tenants using dynamic resource multiplexing.

3 Multi-Tenant sNICs

We illustrate how mechanisms found in existing sNIC stacks
are insufficient for fair resource management. Applications
differ in their resource requirements, thus, leading to different
resource multiplexing bottlenecks. We provide quantitative
analysis on how these problems display in a multi-tenant envi-
ronment, resulting in specific requirements for sNICs. These
insights directly led to the microarchitectural and software
choices for OSMOSIS. For all experiments, we use a 400
Gbit/s link speed together with the workloads and experimen-
tal setup as described in Section 6.

Per-packet time budget (PPB): While studies of datacenter
traffic show that only a fraction of the established connections
actively exchange data at any given time [8, 58, 67], they
saturate the link bandwidth. To analyze the implications of
this for sNICs we use PPB. We define PPB using PU count
N, packet size P, and link bandwidth B as PPB(N,P,B) =
N × (P/B). PPB shows how long the sNIC can process a
packet until the next one arrives, assuming a fully utilized link.

3

32 64 128 256 512 1024 2048
Packet Size [Bytes]

10
2

10
3

Av
g

K
er

ne
l C

om
pl

et
io

n
Ti

m
e

[C
yc

le
s]

PPB at 400 Gbit/s

Compute Bottleneck

IO Bottleneck

Aggregate
Filtering

Reduce
Host Write

Histogram
Host Read + Egress Send

Figure 3: sNIC core (PU) processing time needed to serve 1
packet for common sNIC kernels. Workloads with triangle
markers are compute-bound, circular markers are IO-bound.
All workloads with ≤ 64B packet size (including 28 byte
IPv4/UDP-header) exceed PPB showing congestion at PUs
when link bandwidth is fully utilized.

If PPB is exceeded, the corresponding sNIC per-application
ingress queue will eventually fill up during transient bursts
leading to packet drops or falling back to priority-based flow
control (PFC) [70] and a possible violation of per-VF SLO
policy.

Figure 3 compares service times of IO– and compute-
bound workloads with theoretical PPB assuming that tenant
workloads fit one packet and that the sNIC has only one tenant.
We observe that all workloads with packet size ≤ 256 Bytes
fail to fit in PPB. Compute-bound workloads whose execu-
tion time scales linearly with the packet payload length (i.e.,
Reduce, Aggregate, Histogram) exceed the theoretical limit
for all packet sizes congesting the PUs that create a bottle-
neck. Notably, IO-bound kernels above 256 Bytes (e.g., DMA
writes/reads or packet sends to Egress) are bottlenecked by
the link bandwidth and fit PPB as they do not congest the
PUs but the IO engines. However, as we will demonstrate,
IO-bound workloads tend to be sensitive to a multi-tenant
contention on the host interconnect.

PU contention: While a single tenant can cause pressure
on the ingress queue and contention of PUs, multiple tenants
can lead to unfairness. For example, consider two compute-
bound tenants with different requirements. One of them, the
Congestor, has twice as large compute cost per packet as
the other, the Victim, leading to twice as many cycles on PU
to finish the kernel. During the burst, Congestor and Victim
push packets at the corresponding per-application (per-VF)
queues at the same ingress rate. As Figure 4 shows, using the
conventional round robin (RR) scheduling of per-application
queues across 8 sNIC PUs provides the Congestor unfairly
with 2× higher occupation of PUs than the Victim.

R1 sNIC manager should fairly allocate compute compo-
nents (e.g., PUs, cryptographic accelerators) while serving
tenants with different compute cost per packet.

Egress and DMA engines contention: Similarly, as the
compute-bound kernels cause contention on PUs, IO-bound

2500 5000 7500 10000 12500 15000 17500
Simulated Time [Cycles]

0

2

4

6

8

Av
g

C
om

pu
te

 U
til

iz
at

io
n

[P
U

s] Maximum utilization

Fair PU utilization

Victim Congestor

C
on

ge
st

or
 s

ta
rts

C
on

ge
st

or
 e

nd
s

Figure 4: Congestor and Victim tenants’ flows with equal pri-
orities are mapped to two different SR-IOV VFs with equal
share of Ingress bandwidth. With the round robin schedul-
ing policy of per-flow queues, the Congestor tenant with 2×
higher compute cost per packet occupies a proportionally
larger number of cores than the Victim tenant.

64B Victim +
64B Congestor

64B Victim +
256B Congestor

64B Victim +
1024B Congestor

64B Victim +
2048B Congestor

64B Victim +
4096B Congestor

10
0

10
1

10
2

R
el

at
iv

e
S

lo
w

do
w

n
[x

]

1.
11

x

1.
44

x 3.
66

x 7.
82

x 14
.5

0x

1.
11

x

1.
39

x 3.
61

x 8.
08

x 14
.1

8x

1.
12

x

1.
88

x 5.
45

x

8.
79

x

9.
47

x

1.
00

x

1.
00

x

9.
80

x 19
.4

5x 36
.2

5xHost Write
Host Read
L2 Read
Egress Send

Figure 5: Slow-down of various IO operations (e.g., DMA
and sending packets to Egress) initiated by the tenant’s kernel
results in HoL-blocking small requests due to underlying IO
path contention.

kernels can lead to contention on the appropriate DMA or
egress engines. IO-bound kernels running on different PUs
can simultaneously initiate IO requests through the same
sNIC engines, e.g., DMA requests from a KVS application.
In case the underlying interconnect (e.g., PCIe or AXI [55]) is
blocking and lacks the support of QoS provisioning, the issue
of multiple concurrent requests may result in Head-of-Line
(HoL) blocking [1].

For example, consider two IO-bound tenants with different
IO requirements. The Victim, has constant 64B packets, while
the Congestor, increases its packet size from 64B to 4096B.
As Figure 5 shows, the contention on the IO engine leads to
an order of magnitude higher latency of the Victim’s messages
without considerably affecting the Congestor’s flow. This
unfairly increases the latency of one of the tenants by 4-15×.

R2 sNIC manager should fairly allocate DMA and egress
bandwidth (e.g., using AXI and PCIe) between running ker-
nels and be resilient to HoL-blocking.

Memory management: Applications impose different run-
time requirements on the memory. For example, some ap-
plications could allocate memory dynamically, leading to an
unknown a priori memory consumption. In the extreme, it
is possible that one tenant can consume all sNIC memory,
including packet buffers, causing others to be HoL-blocked.

4

PU Frequency ISA Linux Caladan RTOS

Host Ryzen 7 5700 3.8GHz x86 28576 211 –

BF-2 DPU A72 2.5GHz ARMv8 13250 192 –

PULP cores [6]
(used in PsPIN) 1GHz RISC-V – – 121

Table 1: Average latency of context switching between 2
processes. Measurements shown in PU cycles scaled to 1
GHz (i.e., 1 ns/cycle).

Implementing virtual memory (i.e., paging) semantics would
likely cause high memory access overheads, given that each
page fault increases memory access latency by orders of mag-
nitude [28].

R3 sNIC manager should fairly allocate memory using
lightweight allocation strategies defined in the control plane.

Scheduling overhead: Existing packet processing user-
defined datapaths were designed for off-path sNICs or conven-
tional host processing. As recent studies show effectiveness
of kernel execution scheduling in terms of achieved maxi-
mum utilization while running on off-path sNICs supported
by OS’s like Linux is driven by the latency of context switch-
ing [18, 34]. PU cycles are wasted during context switch-
ing to transition between the kernel states. We benchmark
context-switching of Linux running on host and off-path sNIC
(Bluefield-2 ARM SoC). We compare these to the state-of-
the-art Caladan scheduler we ported to the ARM ISA [18].
For reference, we also show the latency of PULP cores as
implemented in PsPIN used to evaluate OSMOSIS. Notably,
we observe that the context switching latencies we report in
Table 1 are higher or of the same order of magnitude as the
PPB from the analysis presented in Figure 3.

R4 Data path performance should not be impacted by over-
heads stemming from scheduling policies, providing low-
latency scheduling of kernel execution.

Control path priority: In case of issues such as exceeding
compute or time budgets by a tenant on the sNIC, control
traffic may require an immediate response from a control
plane running on the host. However, sNIC to host commu-
nication involves the system interconnect (e.g., PCIe) that
typically introduces 0.5 – 2 usec overhead per each read/write
request. As the system interconnect is sensitive to congestion
(Figure 5), that may result in HoL-blocking of the control
traffic and unpredictable packet processing behavior without
the ability of the host to react. Resolving this by moving the
execution of requests to the host (e.g., iPipe [41]) introduces
additional latency overheads to the processing of each packet.

R5 sNIC accelerated packet processing should prioritize
control-path traffic and not rely on latency-introducing host
CPU as a fallback path.

QoS API: NIC capabilities are exposed to tenants through a
virtualization layer (OS hypervisor) that provides an illusion
of full resource ownership. SR-IOV is a conventional way to
implement NIC virtualization. In SR-IOV, each NIC physical
function (PF) (such as TX and RX capabilities) is mapped
to several virtual functions (VFs). Each VF is exposed to OS
hypervisor as a stand-alone PCIe NIC. To our knowledge,
existing production rNICs and sNICs support only Ingress
and Egress bandwidth allocation on the coarse basis of VFs
and not compute or DMA resources.

R6 sNIC management plane should support conventional
QoS provisioning mechanisms for all types of resources.

4 OSMOSIS

Figure 6: Abstract model of OSMOSIS-enabled sNIC. Pack-
ets are mapped by Matching Engine to FMQs and dispatched
for execution by scheduler.

We present OSMOSIS in Figure 6. We begin with a high-
level overview of how OSMOSIS manages the three compet-
ing sNIC resources and satisfies the multi-tenancy require-
ments outlined in the previous section. We then show how
this is achieved by separating the system into two parts: a
non-critical flexible software control plane dealing with man-
agement tasks running on the host and a performance-critical
hardware data plane supporting SLO policy enforcement. We
discuss each part in detail.

PUs DMA Egress Memory

Scheduler WLBVT WRR WRR Static

SLO knob
Priority

Kernel cycle limit Priority Priority Allocation size

Fulfilled
requirements R1 R4 R6 R2 R4 R5 R6 R2 R4 R6 R3 R4 R6

Table 2: OSMOSIS resource management principles with all
six fulfilled multi-tenancy requirements.

5

4.1 High-level Overview

1 Flow execution context creation: To utilize sNIC packet
processing, tenants create a flow execution context (ECTX).
ECTX contains seven elements, such as the SLO policy and
the packet processing kernel, a piece of code compiled for
the target PU architecture and describing the actions to be
performed for each packet destined for the tenant.

2 ECTX initialization: After the tenant provides the basic
elements of an ECTX, OSMOSIS instantiates it. It allocates
a virtualized sNIC interface through the host OS hypervisor
and associates it with a tenant IP address and SLO policy. It
also sets up the IOMMU to allow kernel access to specific
host pages, statically allocates on sNIC memory and loads
the kernel binary into sNIC memory.

3 Matching packets to flow management queue: The
sNIC matching engine filters packets that require sNIC pro-
cessing. All incoming packets are matched against the three-
tuple (in case of UDP) or five-tuple (in case of TCP) of ac-
tive sNIC ECTXs. Once matched, packet descriptors (e.g.,
pointer to packets in sNIC memory) are stored at one of the
flow management queues (FMQs). FMQs are used to store
all information regarding an active flow ECTX on the sNIC
hardware. FMQs are organized as FIFO queues of packet
descriptors with an additional memory state to store running
execution information (e.g., BVT metric).

4 PU scheduling: Once a PU becomes available, OSMO-
SIS schedules the packet at the head of one of the FMQs.
To achieve fair PU allocation, OSMOSIS implements a cen-
tralized, non-preemptive scheduler inspired by the Borrowed
Virtual Time (BVT) policy [15, 34]. BVT aims to allow each
tenant to obtain the same amount of access time to the sched-
uled resource by keeping track of their past usage. OSMOSIS
FMQ scheduler allocates sNIC PUs to FMQs with the small-
est priority-adjusted past PU usage measured in cycles, while
maintaining the SLO policy specified by the sNIC adminis-
trator, such as the upper per-FMQ PU limit.

5 Kernel execution and IO management: Once the packet
is loaded into local PU memory, the PU can initiate process-
ing by executing the appropriate kernel. As exemplified in
Section 3, the DMA and egress data transfers originating
at parallel kernels executing on different PUs may result in
head-of-line blocking (HoL-blocking) and unpredictable tail
latency. OSMOSIS ensures fair arbitration across IO data
paths by splitting large DMA requests into smaller transac-
tions and scheduling these transactions using the weighted
round-robin (WRR) policy. This gives each tenant a priority-
adjusted fair chunk of the bandwidth.

4.2 Flexible software control plane

OSMOSIS provides a host OS API for managing the sNIC
packet processing, creating the execution context, and offload-
ing the handling of specific flows to the NIC. When a tenant
offloads processing of a flow to the sNIC, they create a flow
ECTX that describes the offloading state. ECTX allows the
host to specify the necessary control details using the follow-
ing components.

SLO policy: The SLO policy specifies the compute, DMA
and egress priorities, per-kernel cycle budget, size of packet
buffer, and on-sNIC memory size available to the executing
kernels. OSMOSIS provides transparent SLO management
semantics indicated in Table 2 as SLO knobs. By default,
all tenants’ execution contexts have the same priority. To
achieve perfect fairness in such a scenario, all flows should
get the same portion of PUs and IO bandwidth at any point
in time. Increasing the priority of the execution context leads
to proportionally more resources (PUs, bandwidth) allocated
to the execution context. To stop kernels that are using the
PUs for too long, we also introduce per kernel cycle limit,
which can be set as a limit for the sum of all parallel kernel
execution times or a limit for the execution time of a single
kernel. We evaluate the impact of priorities on the fairness of
resource allocation in Section 6.

Kernel binary: kernel binary compiled by the tenant is loaded
into sNIC memory by the control plane and is later executed
on the flow packets. The kernel binary can compute and sched-
ule DMA and egress requests according to the tenant require-
ments.

A virtualized sNIC device: A virtualized device is allocated
for the tenant by OSMOSIS, e.g., SR-IOV VF. OSMOSIS
associates an IP address with the virtualized device and uses
it later for matching. The virtualized device is connected
internally with a single FMQ.

A matching rule: The matching rule is used to match packets
from the sNIC inbound stream to the execution context and
manage their processing within the same FMQ. A matching
rule allows the tenants to open multiple ports on the same
virtualized device. The matching engine can match packets
based on their UDP/TCP header contents. For example, it can
match the IP address and the destination port of the applica-
tion.

sNIC memory segments: The sNIC memory segments are
allocated statically to each kernel depending on the requested
memory size. The kernels can store the application state in
sNIC local memory, e.g., KVS-cache or packet filter table.
The minimum allocation a valid ECTX has is the size of the
kernel binary loaded into the sNIC memory by the control
plane. An error is returned if the tenant uses too much memory
or the kernel binary is larger than the SLO policy limits.

Host memory pages: The ECTX specifies which host pages

6

can be accessed from the specific kernel via DMA. Accessing
the host memory can be useful, for example, with accessing
cold KVS data. The DMA engine on the sNIC interfaces
the host memory with an IOMMU, translating host virtual
addresses to physical addresses. The IOMMU also checks
whether the sNIC is accessing an allowed memory region.
The control plane initializes the IOMMU with appropriate
page tables during execution context creation.

Event queue (EQ): An event queue is used to keep track
of events such as errors that happened during kernel execu-
tion. Whenever an error occurs during kernel runtime (e.g.,
illegal memory access from kernel, or kernel execution time
exceeding quota), OSMOSIS notifies the host by writing an
event in the EQ of the kernel’s ECTX. OSMOSIS provides
a corresponding host API call to check the presence of error
messages in that queue, which then needs to be managed by
the application. EQ could be implemented as a contiguous
memory region of sNIC memory, mapped to host address
space, e.g., as in the RDMA Verbs API [31]. Control path
traffic traverses the same sNIC DMA datapath as normal ker-
nel execution traffic. However, as the control events usually
require immediate action from tenants, we reserve the highest
IO priority control path traffic.

4.3 Hardware data plane
OSMOSIS aims to provide the lowest possible traffic manage-
ment overhead with a minimal hardware footprint. In this sec-
tion, we discuss two key mechanisms that help us to achieve
this goal: a hardware flow abstraction (FMQs), and scheduling
algorithms suitable for hardware implementation (WLBVT
and DWRR).

Flow management queues: FMQ abstraction generalizes a
packet flow similarly to how a hardware thread generalizes a
process. FMQs store matched packet descriptors in a FIFO
queue and monitor the flow processing performance. The
scheduler then uses these measures to fairly allocate compute
resources and enforce per-flow priorities. The processing of
a FIFO queue results in a sequence of kernel executions on
the sNIC PUs, which is similar to a sequence of program
instruction executions of a conventional OS process execution
flow. FMQs additionally store a part of the flow execution
context state, such as the matching rule, pointers to the kernel
binary, and the SLO policy definition. FMQs are initialized
and controlled by the aforementioned host-side control plane.
The control plane maps the FMQs to the host as a set of
MMIO registers within the SR-IOV VF address space. FMQs
are highly extensible. For example, the OSMOSIS priority
model is compatible with Ethernet DCB. In case of congestion
on the FMQ FIFO queue, the packets can be marked with the
appropriate Ethernet ECN congestion flag.

FMQ Scheduling: The goal of the FMQ scheduler is to al-
locate PUs across flows with different DMA, egress, and

compute cost-per-packet that is not known a priori. Thus,
to achieve fair compute utilization, the FMQ arbitration pol-
icy needs to be invariant to the cost-per-byte of the packet.
Conventional round-robin lacks this desirable property (see
Figure 4). OSMOSIS implements a scheduler as simple and
scalable as the deficit-weighted round-robin (DWRR) but with
a minimal additional hardware area footprint (see Section 5).

OSMOSIS utilizes a greedy Weight Limited Borrowed Vir-
tual Time (WLBVT) arbitration policy, a hybrid of Weighted
Fair Queuing (WFQ) like model of FMQ weights and Bor-
rowed Virtual Time (BVT) scheduler. We adopt the BVT
algorithm to suit specific sNIC hardware implementation con-
straints [15, 34] and present our scheduler in pseudo-code
Listing 1. Intuitively, our modified BVT scheduler aims to al-
locate each tenant the same amount of PU processing time nor-
malized by priority while ensuring that each tenant is served
fairly during resource contention.

1 def pu_limit(ActiveFMQs , fmq):
2 prio_sum = 0
3 for fmq in FMQs:
4 if not fmq.empty:
5 prio_sum += fmq.prio
6 return ceil(len(FMQs) * fmq.prio / prio_sum)
7

8 def update_tput(FMQs): #called at each clock cycle
9 for fmq in FMQs:

10 fmq.total_pu_occup += fmq.cur_pu_occup
11 if not fmq.empty or fmq.cur_pu_occup > 0:
12 fmq.bvt += 1 # update only in active state
13 fmq.tput = fmq.total_pu_occup / fmq.bvt
14

15 def get_fmq_idx(): #called once PU core is free
16 min_tput = MAX_INT
17 for fmq in ActiveFMQs:
18 if fmq.pu_occup < pu_limit(activeFMQs , fmq):
19 if fmq.tput / fmp.prio < min_tput:
20 min_tput = fmq.tput / fmq.prio
21 fmq_idx = fmq.idx
22 return fmq_idx

Listing 1: WLBVT scheduler procedural pseudocode.

An FMQ is in an active state if it contains packet de-
scriptors in the FIFO queue or if its packets are currently
being processed on any PU. Flow throughput is updated
(update_tput) at each sNIC clock cycle only if the corre-
sponding FMQ is active. The scheduler (get_fmq_idx) re-
turns the index of the non-empty FMQ that fits the upper
limit of weighted PU occupation (pu_limit called in line 21)
and has the lowest current throughput normalized by FMQ
priority (lines 22, 23).

The upper limit of weighted PU occupation ensures tenants
are served fairly by occupying the number of PUs propor-
tional to their priority. pu_limit is set using a ceil function
to ensure that each tenant obtains processing time in the case
of a larger number of active FMQs than the number of PUs pri-
orities or when the priorities divide the number of PUs into a
non-integer value. The lowest priority normalized throughput
ensures that each tenant has the same access to the oversub-

7

scribed PU over time, and tenants with lower overall resource
usage are prioritized. Our policy could be easily extended to
account for the total virtual time spent by each tenant on PU
(i.e., line 21), thus making it suitable for tenant billing.

Kernel execution: After scheduling on a PU, the correspond-
ing kernel binary is loaded from local memory, and kernel
execution starts. Kernel execution is a short-lived event as
each execution only processes one packet. In OSMOSIS, we
run kernels to completion [7,53]. We avoid context-switching
for several reasons. As shown in Table 1, context switching
can introduce significant overhead. It also increases the com-
plexity of the hardware datapath and requires additional states
per each active kernel.

If a kernel does not terminate within a configurable time
limit, for example, because of a bug in the code, the kernel is
killed, and the host application is notified through the corre-
sponding EQ. We believe that run-to-completion semantics
enable sNIC programming model that, together with OSMO-
SIS fair priority adjusted schedulers, enforces predictable
packet processing tail latency. Run-to-completion also pro-
hibits offloading compute-intensive workloads better suited
to run on GPUs or FPGAs rather than sNICs [7, 53].

Kernel IO Scheduling: Throughout execution, per packet
kernels can issue concurrent DMA transfers to the sNIC/host
memory and data transfers to the sNIC egress engine. For
example, the kernel can implement pipelining of large storage
IO read operations by overlapping asynchronous DMA reads
of packet-sized payloads with sending packets to the sNIC
egress engine. The DMA and egress engines obtain from
the FMQs the corresponding IO priorities of each tenant that
initiated IO requests within the kernels. OSMOSIS employs
a fragmentation of DMA and egress transfers into smaller
chunks to enable fair IO scheduling. These smaller chunks
are arbitrated with a WRR policy and can achieve near-perfect
fairness.

4.4 Discussion

IO security: Host memory is protected against unauthorized
DMA transfers using an IOMMU setup by OSMOSIS when
the host creates the flow context. Similarly, local sNIC mem-
ory accesses need to be protected. This can be achieved, for
example, by a Physical Memory Protection unit (PMP) [65]
as shown in Section 5.1.

Kernels can also interact with the outbound engine to inject
packets into the network. Injecting arbitrary packets might
be used to perform security attacks such as spoofing [57]. To
avoid that, OSMOSIS installs filtering rules in the outbound
engine. These rules are similar to the ones in the packet match-
ing engine, which associate packets with FMQs. The filtering
rules are specific to the system, and protocol. They are in-
stalled when the ECTX enters the sNIC and removed when
the ECTX is evicted from the sNIC.

Cryptographic accelerators: The sNIC not only moves the
data but might also need to access it for processing. Hence,
the sNIC should be able to decrypt packets if the flow is en-
crypted, for example, in protocols like QUIC [69]. The sNIC
can either have a dedicated cryptographic accelerator per PU
accessible through ISA extensions (e.g., Intel AES-NI [25]) or,
for resource/space efficiency reasons, one shared accelerator
per multiple PUs (e.g., like in Marvell LiquidIO [43]). In the
latter scenario, the cryptographic accelerator is a compute de-
vice similar to the PUs. Thus, the WLBVT scheduler could be
used for scheduling access to the cryptographic accelerators.

Transport protocols: While this work does not focus on
sNIC transport protocols, OSMOSIS, by design, is compati-
ble with conventional congestion signaling (e.g., ECN) and
lossless flow control mechanisms (e.g., Ethernet DCB). It
can also be deployed with DCQCN [70] and DCTCP [3].
From the transport protocol perspective, the packet queueing
delay within the FMQs and the corresponding execution of
the packet kernel is just another source of latency. For exam-
ple, the FMQ abstraction deployed with Ethernet can support
RED/ECN marking [17, 31]. Another mechanism that FMQ
can easily support is supplying the P4 INT-MD telemetry
information [2] to enable the HPCC protocol [40].

Off-path processing: While OSMOSIS is designed with
on-path packet processing in mind, OSMOSIS design prin-
ciples are applicable to off-path processing and could be im-
plemented fully in software (e.g., using receive side scaling
(RSS) [44]).

5 Implementation

We describe how we implement OSMOSIS on top of
PsPIN [12, 24], an open-source on-path sNIC that sup-
ports portable C API for packet processing offloading. We
also show how we adopt the PsPIN implementation for
performance-critical operations within OSMOSIS. For that
purpose, we extended the host-side PsPIN API to support mul-
tiple execution contexts and specify tenant SLOs using 335
lines of code (LOCs). We also implemented a cycle-accurate
simulation of OSMOSIS using functional C++ implementa-
tions of the matching engine, FMQ scheduling, WLBVT, and
AXI and DMA request fragmentation with 1216 LOCs. In
addition, we implemented all these components as synthesiz-
able SystemVerilog IP blocks for hardware area estimations.
These blocks can serve as a future prototype for full hardware
ASIC or FPGA-based implementation of OSMOSIS.

5.1 Implementing OSMOSIS on top of PsPIN

Packet processing units: OSMOSIS PsPIN architecture is
based on scalable silicon-proven RISC-V PULP SoC [12, 38,
56]. The PUs are RI5CY 32-bit cores organized in clusters.

8

Each PsPIN cluster contains 8 PUs clocked at 1GHz and cou-
pled with a low-latency (1 cycle), multi-banked local memory
called L1 scratchpad. For our experiments, we use the de-
fault configuration of the PsPIN PU cluster with a 1 MiB L1
data, and 4 KiB L1 instruction caches. Clusters share a global
4 MiB L2 packet buffer and a 4 MiB L2 kernel buffer, which
can be used for local data storage.

Portable Programming API: OSMOSIS utilizes PsPIN in-
frastructure to offload the processing packets to the PUs. The
user writes a C kernel cross-compiled on the host for the
RISC-V ISA architecture. The kernels are then loaded and
executed on the flow packets according to the sPIN API [24].

Kernel IO: The sPIN API permits the programmer to use
blocking and non-blocking calls within the kernel code to
initiate DMA and sNIC egress packet transfers. Each PsPIN
cluster has a 512-bit AXI DMA interconnect engine that con-
nects cluster scratchpad memories to the global sNIC L2
kernel buffer, host DMA engine buffer, and sNIC egress en-
gine buffer. Such an interface allows kernels to issue read
and write data transfers between these buffers. PUs in one
cluster can access the local memory of other clusters and the
shared L2 kernel sNIC memory in 10 to 30 cycles.

Such design also allows transparently supporting NIC
egress packet send by internally issuing DMA write of the
packet from kernel scratchpad memory to the NIC egress en-
gine buffer. Specifically, the PU core L1 scratchpad interfaces
a functional implementation of an Ethernet link on top of the
AXI bus protocol. PsPIN IO-calls write a DMA command, in-
cluding source and destination addresses, transfer length, and
a pointer to the completion handle to the registers of the PU
core. This involves a sequence of 7 sw instructions followed
by one lw instruction. Outstanding IO commands are queued
in the cluster command FIFO. The WRR policy arbitrates the
command FIFOs for admission to the DMA engines.

Memory management: Our implementation allows to spec-
ify the size of the L2 and L1 memories allocatable to tenants.
We implement memory isolation using Physical Memory Pro-
tection (PMP) PsPIN PU unit. When the kernel accesses L1
and L2 memories, the virtual memory addresses are translated
to physical addresses with relocation registers. The PMP then
checks that the addresses are within the valid segment range.
Like the relocation registers, the PMP unit does not increase
the memory access latency [12].

5.2 OSMOSIS Schedulers

FMQ scheduling implementation: FMQ consists of a FIFO
queue, the execution context, and the state necessary for
scheduling. FIFO queue stores packet descriptors. Each
packet descriptor contains a 32-bit pointer to the packet. The
execution context has been discussed in depth in Section 4.
The scheduling state contains a BVT counter that tracks the

past resource utilization of tenants and a priority. We imple-
mented the counter as a 64-bit register selected to avoid over-
flow1. We implemented the priority as a 16-bit register. Using
the BVT counter and the priority, the WLBVT scheduler
selects FMQs. We implemented WLBVT and the aforemen-
tioned per FMQ registers in SystemVerilog with 128 FMQs.
Our implementation synthesizes at 1 GHz with a scheduling
decision taking five cycles. Most of the latency stems from the
weight-limiting part of the WLBVT algorithm, which needs a
division that creates issues within a fast hardware implemen-
tation. To hide the associated latency, we employ pipelining.
We overlap the FMQ arbitration with the DMA transfer of
the packet from the L2 packet buffer to the cluster scratchpad
taking at least 13 cycles for a 64-byte packet.

Enhanced DMA engine: To avoid HoL-blocking of small
requests behind large DMA transfers, OSMOSIS employs
transfer fragmentation on the DMA engine interfacing the
host and on the egress engine. We implement two modes of
fragmentation: a runtime executed software fragmentation
implemented within the kernel call for a DMA transfer, and a
hardware fragmentation within the DMA engine.

We implement the software approach as a function wrapper
around pspin_dma_read/write and pspin_send_packet
calls. Our middleware splits larger requests into smaller
chunks and issues multiple non-blocking DMA requests of
smaller sizes. Internally, the OSMOSIS holds the state for
each smaller transfer and ensures they execute entirely. As we
demonstrate in Section 6, fragmentation helps to avoid HoL
blocking, yet the software implementation limits the improve-
ment, which comes at the cost of increased DMA request com-
pletion time. We extend the AXI interconnects functional part
to reduce software overheads and enable hardware fragmenta-
tion. Our extension includes a state for multiple outstanding
AXI write requests arbitrated using a WRR scheduler.

6 Evaluation

We study how OSMOSIS allocates sNIC resources under
different traffic conditions and workload requirements. We
investigate the following research questions:

1. How does the hardware area of critical components of
OSMOSIS (e.g., PU clusters and schedulers) scale up
with the ingress link rates and the number of tenants?

2. What are the overheads of OSMOSIS compared to the
reference PsPIN implementation?

3. What is the maximum load that OSMOSIS can sustain?

4. How fair are OSMOSIS resource allocations?
1The overflow of the 64-bit per-FMQ BVT counter at 1 GHz frequency

with increments done every cycle will happen in 264 ÷10−9 sec/op ÷60 sec
÷60 min ÷24 hr ÷365.25 days ≈ 584 years.

9

10
2

10
3

Av
g

P
P

B
 [C

yc
le

s]

Reduce 64B
Reduce 128B

Reduce 512B

Reduce 2048B
400 Gbit/s 800 Gbit/s 1600 Gbit/s

1 Cluster (8 cores)
1 MiB L2

2 Clusters
2 MiB L2

4 Clusters
4 MiB L2

8 Clusters
8 MiB L2

16 Clusters
16 MiB L2

32 Clusters
32 MiB L2

10
0

10
1

10
2

10
3

A
S

IC
 A

re
a

S
iz

e
[M

G
E

]

0.
7 1.

4 2.
9 5.

7 11
.5 22

.9

10
.0 20

.0 40
.0 80

.0 16
0.

0

32
0.

0

11
.9 23

.8 47
.6 95

.3 19
0.

6

38
1.

1

SoC Interconnect Clusters L2 Memory

Figure 7: The cost model of PUs, L2 memory and SoC inter-
connect area scaling synthesized in 22nm GF process, com-
pared to the theoretical per packet budget (averaged for dif-
ferent packet sizes at 64 – 4096 byte interval) achieved with
400, 800 and 1600 Gbit/s ingress link rates.

6.1 Hardware Scaling

To estimate hardware area costs, we synthesize OSMOSIS
and PsPIN SystemVerilog IP blocks at 1GHz frequency in
GlobalFoundries 22nm node process using Synopsys Design
Compiler NXT in topographic mode.

sNIC area scaling with compute capacity: PsPIN clusters
utilize a hierarchical SoC-interconnect similar to the Manti-
core scale-out study [38]. We group four clusters in a quadrant
that shares a local interconnect. Each quadrant is connected
to the L2 memory allowing all cores to access the shared
packet buffer. Synthesis studies [12, 38] have shown that area
increases and timing overhead of adding more ports to L2
are negligible compared to the overall size of L2. Figure 7
shows our synthesis results, indicating that PsPIN achieves
linear scaling of compute capacity with respect to the core
area. We also provide an analysis of the cluster requirements
for a Reduce workload. For example, 4 PU clusters achieve
an average per-packet budget (PPB) (see Section 3) that is
enough to sustain Reduce with packets of up to 512 bytes.

OSMOSIS Schedulers Scaling: Figure 8 shows the hard-
ware area consumption of OSMOSIS schedulers. We observe
a linear scaling of the FMQ and AXI DMA engine schedulers
with the number of inputs. Compared to RR, WLBVT needs
7× more gates, yet with 128 FMQs (e.g., 128 tenants), WL-
BVT area consumption takes only 1% of PsPIN cluster and
L2 memory area.

8 16 32 64 128
Number of Arbitrated FMQs

10
1

10
2

10
3

10
4

A
S

IC
 A

re
a

S
iz

e
[k

G
E

]

8
(0

.0
1%

)

18
 (0

.0
2%

)

34
 (0

.0
4%

)

68
 (0

.0
8%

)

13
9

(0
.1

5%
)

41
 (0

.0
5%

)

91
 (0

.1
0%

)

19
6

(0
.2

2%
)

47
5

(0
.5

2%
)

10
08

 (1
.1

1%
)

WRR WLBVT

1 2 4 8 16 32
Number of Concurrent

AXI DMA Streams

64
 (0

.0
7%

)

12
7

(0
.1

4%
)

25
5

(0
.2

8%
)

51
0

(0
.5

6%
)

10
19

 (1
.1

3%
)

20
38

 (2
.2

5%
)

Figure 8: The linear area scaling of WLBVT and WRR sched-
ulers synthesized in GF 22nm process. The captions within
the bars show the absolute number of gates and relative area
compared to 4 PU clusters with 4 MiB L2.

6.2 Experimental Methodology

We evaluate OSMOSIS runtime performance using cycle-
accurate simulation with Verilator v4.228 SystemVerilog sim-
ulator [60]. Our experimental testbed features two setups: a
Reference (baseline) PsPIN implementation, which is a con-
ventional on-path sNIC without multi-tenant OS and a PsPIN
implementation enhanced with OSMOSIS management.

We configure both setups with 4 PsPIN clusters and 32
cores clocked at 1GHz. Ingress and egress data paths are con-
figured to achieve 400 Gbit/s bandwidth. L2 and host memory
are configured with 512 Gbit/s peak theoretical bandwidth.
We run experiments using randomly pre-generated packet
traces that fully utilize ingress link bandwidth. We sample the
sequences of packet arrivals from a uniform distribution, and
packet sizes from a lognormal distribution. For fairness mea-
surements, we use Jain’s fairness metric [27]. Jain’s metric is
always scaled between 1 and 1/number of tenants. If Jain’s
metric is y, then y% of users are treated fairly, and (100−y)%
are starved. Fair treatment is defined as each tenant having
the same priority-adjusted access to resources.

6.3 Synthetic Benchmarks

We evaluate OSMOSIS on a set of synthetic benchmarks to
assess its overheads in a low-complexity environment.

R1 R5 Fair HPU allocation: We evaluate the WLBVT
scheduler and compare it to the traditional RR. We run two
applications, one with a larger compute cost per byte, the Con-
gestor, and the other with a smaller one, the Victim. Both spin
in a for loop to simulate a compute-bound task. Figure 9
shows how RR over-allocates PUs to the Congestor, leading

10

0.8

1.0

fa
irn

es
s

RR
WLBVT

0

25

PU
s RR

1000 1500 2000 2500 3000 3500 4000 4500
Time [cycles]

0

25

PU
s

WLBVT

Figure 9: The fairness of WLBVT and RR with two tenants
of different compute cost per byte.

to lower fairness as shown by Jain’s metric. WLBVT consis-
tently splits all the resources equally between tenants. When
the Victim has no outstanding packets, WLBVT allows the
Congestor to overtake more PUs. WLBVT enables fair com-
pute resource allocation within OSMOSIS and does not cause
slowdowns within the benchmarks.

R2 R5 Resolving HoL-blocking: We evaluate the scaling
of throughput of the Congestor and the kernel completion
time of the Victim while conducting only Egress transfers
that involve AXI writes. Figure 10 presents how OSMO-
SIS resolves HoL-blocking. Depending on the fragmentation
method, the Victim’s kernel completion time can be reduced
by an order of magnitude while preserving a relative slow-
down of only around 2×. The throughput reduction stems
from control traffic overhead related to fragmentation, which
can be resolved through a custom implementation of the AXI
protocol, allowing for parallel transfer states [33,54]. We also
observed two bottlenecks: ingress and egress. In the ingress
bottleneck, the incoming link bandwidth is the limit, while
in the egress one, the AXI bus congestion causes slowdowns.
While the overheads come from the interconnect, OSMOSIS
scheduling does not introduce overheads, as evident for low
Congestor sizes.

6.4 Datacenter Workloads

Additionally, we port a set of real datacenter workloads such
as aggregation, histogramming, filtering, and KVS reads and
writes to evaluate the performance of OSMOSIS. Our eval-
uation begins by measuring the impact of OSMOSIS on the
packet throughput of standalone applications. We then pro-
ceed to evaluate application mixtures to showcase more real-
istic operational scenarios.

Management overheads: To assess the influence of OSMO-
SIS management on applications’ performance, we start by
running them in isolation. Figure 11 displays how OSMO-
SIS does not introduce considerable overheads for compute
workloads. These oscillate within ±3% of the baseline PsPIN
implementation and reach the maximum of 310Mpps for the

64 128 256 512 1024 2048 4096

101

Co
ng

es
to

r
Th

ro
ug

hp
ut

[M
pp

s]

Egress Bottleneck

64 128 256 512 1024 2048 4096
Congestor Size [bytes]

102

103

Vi
ct

im
 C

om
pl

et
io

n
 ti

m
e

[c
yc

le
s]

Ingress Bottleneck

Fragmentation
HW
SW
baseline (none)
Fragment size
512 B
64 B
none

Figure 10: The impact on the Congestor throughput and the
Victim kernel completion time as a function of the Congestor
size and various fragment sizes.

Aggregate Histogram Reduce Filtering KVS read KVS write

80

90

100

110
Re

la
tiv

e
Pa

ck
et

 T
hr

ou
gh

pu
t [

%
]

31
0

27
6

31
1

10
9

20
4

33
2

56
.1

36
.1

45 80
.1

86
.5

93

28
.8

18
.2

22
.8

44
.8

44
.6

47
.414

.6

9.
13

11
.5

23
.4 22

.1

24
.17.

35 4.
57

5.
76

11
.8

10
.8

11
.9

64 B 512 B 1024 B 2048 B 4096 B

Figure 11: The relative packet throughput of common data-
center workloads run in a standalone mode as a function of
fragment size with their raw performance in million packets
per second (Mpps) at the top of the bars.

Aggregation workloads. For IO-related workloads, OSMO-
SIS introduces overheads stemming from the fragmentation,
which have been discussed in Section 6.3. This can be re-
solved by introducing an extension to the AXI bus proto-
col [33, 54]. While the overheads reach from 23% to 2%
and represent the cost of introducing fair and efficient multi-
tenancy, the workloads still achieve 332Mpps in the KVS write
case.

Application mixtures: Evaluating applications in isolation
is not representative of real workloads which occur in multi-
tenant datacenters for which OSMOSIS was designed and
where multiple users contend for resources. We consider two
application sets: a compute-bound set and an IO-bound set,
each resulting in resource contention between tenants.

The compute-bound set consists of the Reduce and His-
togram workloads. Each is introduced as a Victim (64B pack-
ets for Reduce and 64-128 packets for Histogram) and Con-
gestor (4KB packets for Reduce and 3072-4096 byte packets
for Histogram). As Figure 12 shows, these workloads saturate

11

0.6

0.8

1.0

Fa
irn

es
s

WLBVT mean score: 0.946
RR mean score: 0.643

0

10

20

PU
s

RR

0 10000 20000 30000 40000
Simulated Time [cycles]

0

10

20

PU
s

WLBVT

39%
34% 6.5% -3.4%

Reduce (V) Histogram (V) Reduce (C) Histogram (C)

Figure 12: The evolution of tenant PU occupation and time
average fairness against the simulated time in cycles. The
percentages indicate the reduction in flow completion time
for each tenant.

the PUs of the sNIC within the first couple thousand cycles
and introduce compute congestion. Using OSMOSIS WL-
BVT scheduling, each tenant obtains an allocation that is, on
average, 47% fairer than that of the typical RR implementa-
tion as measured using Jain’s metric. Such allocations ensure
SLO fulfillment and result in 39-7% faster flow completion
times because of lower average contention, while only sacri-
ficing 3% of the Histogram Congestor. OSMOSIS achieves a
fair and efficient resource allocation.

The IO-bound set consists of KVS read and write workloads
which are again introduced as both a Victim and Congestor
with the same packet size parameters as the Histogram work-
load. For the IO-bound workloads, we focus on the average
throughput of each workload. Figure 13 shows that, similarly
to the compute case, OSMOSIS obtains a consistently fairer
allocation than a traditional RR scheduler by 83% as mea-
sured by the average Jain’s fairness metric. OSMOSIS also
manages to reduce flow completion times for all of the tenants
by up to 63%. Such large improvement comes from solving
the HoL-blocking problem and obtaining a more efficient
allocation. The KVS read Congestor is initially suppressed to
let other tenants fairly finish their workloads and then obtains
full exclusive utilization, eliminating contention and allowing
it to regain the lost performance. On the other hand, the other
tenants are fairly allocated and, as Figure 14 shows, they do
not suffer from HoL-blocking.

Figure 14 also displays the true cost of the aforementioned
gains. While the overall flow completion time is reduced
for all tenants, the single kernel completion time shows a
different story. The HoL-blocking is resolved for the Victim
tenants, for which the kernel completion time is reduced more
than fivefold. However, the other Congestor tenants display
an up to eightfold increased median kernel completion time.

0.4

0.6

0.8

1.0

Fa
irn

es
s WLBVT mean score: 0.903

RR mean score: 0.493

0

200

400

IO
 th

ro
ug

hp
ut

[G
bp

s]

RR

0 10000 20000 30000 40000 50000 60000
Simulated Time [cycles]

0

200

400

IO
 th

ro
ug

hp
ut

[G
bp

s]

WLBVT62%
63% 0.33%51%

KVS read (V) KVS write (V) KVS read (C) KVS write (C)

Figure 13: The evolution of tenant IO throughput and time
average fairness against the simulated time in cycles. The
percentages indicate the reduction in flow completion time
for each tenant.

Figure 14: The completion time distribution for IO-bound
applications for two fragment sizes.

OSMOSIS achieves overall flow completion time gains for
the IO set by allocating the resources fairly, more efficiently,
and by parallelizing the packets appropriately. However, it
also increases the median single-packet processing time.

7 Conclusions

Enabling user-level in-network processing in modern multi-
tenant datacenters brings resource multiplexing challenges.
OSMOSIS solves sNIC multi-tenancy by distributing re-
sources such as the egress engine, DMA engine, and pro-
cessing units across flows with different priorities, input band-
width, and computational requirements. To achieve fair distri-
bution of resources, OSMOSIS relies on sNIC-specific prin-
ciples, such as work-conservative dynamic allocation of re-
sources, and NIC-to-host rate limiting. The evaluation shows
that OSMOSIS efficiently and fairly redistributes resources,
enabling performance isolation and prioritization between
flows. It can improve the flow completion times by up to 60%
and is fairer by up to 83% than the typical schedulers. We

12

believe that OSMOSIS could enable wider adoption of sNICs
in cloud datacenters with low overhead.

References
[1] AGARWAL, S., AGARWAL, R., MONTAZERI, B., MOSHREF, M.,

ELMELEEGY, K., RIZZO, L., DE KRUIJF, M. A., KUMAR, G., RAT-
NASAMY, S., CULLER, D., ET AL. Understanding host interconnect
congestion. In Proceedings of the 21st ACM Workshop on Hot Topics
in Networks (2022), pp. 198–204.

[2] AGRAWAL, A., AND KIM, C. Intel tofino2–a 12.9 tbps p4-
programmable ethernet switch. In 2020 IEEE Hot Chips 32 Symposium
(HCS) (2020), IEEE Computer Society, pp. 1–32.

[3] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M. Data
center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Con-
ference (2010), pp. 63–74.

[4] ANDERSON, T. E., OWICKI, S. S., SAXE, J. B., AND THACKER,
C. P. High-speed switch scheduling for local-area networks. ACM
Transactions on Computer Systems (TOCS) 11, 4 (1993), 319–352.

[5] ATTIG, M., AND BREBNER, G. 400 gb/s programmable packet parsing
on a single fpga. In 2011 ACM/IEEE Seventh Symposium on Archi-
tectures for Networking and Communications Systems (2011), IEEE,
pp. 12–23.

[6] BALAS, R., AND BENINI, L. Risc-v for real-time mcus - software
optimization and microarchitectural gap analysis. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE) (2021),
pp. 874–877.

[7] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. {IX}: a protected dataplane
operating system for high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14) (2014), pp. 49–65.

[8] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (New York, NY, USA,
2010), IMC ’10, Association for Computing Machinery, p. 267–280.

[9] BORROMEO, J. C., KONDEPU, K., ANDRIOLLI, N., AND VAL-
CARENGHI, L. Fpga-accelerated smartnic for supporting 5g virtualized
radio access network. Computer Networks 210 (2022), 108931.

[10] CAI, Q., VUPPALAPATI, M., HWANG, J., KOZYRAKIS, C., AND
AGARWAL, R. Towards µ s tail latency and terabit ethernet: disaggre-
gating the host network stack. In Proceedings of the ACM SIGCOMM
2022 Conference (2022), pp. 767–779.

[11] DEAN, J., AND BARROSO, L. A. The tail at scale. Communications
of the ACM 56, 2 (2013), 74–80.

[12] DI GIROLAMO, S., KURTH, A., CALOTOIU, A., BENZ, T., SCHNEI-
DER, T., BERANEK, J., BENINI, L., AND HOEFLER, T. A risc-v
in-network accelerator for flexible high-performance low-power packet
processing. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA) (2021), IEEE, pp. 958–971.

[13] DONG, Y., YANG, X., LI, J., LIAO, G., TIAN, K., AND GUAN, H.
High performance network virtualization with sr-iov. Journal of Paral-
lel and Distributed Computing 72, 11 (2012), 1471–1480.

[14] DONG, Y., YU, Z., AND ROSE, G. Sr-iov networking in xen: Archi-
tecture, design and implementation. In Workshop on I/O virtualization
(2008), vol. 2.

[15] DUDA, K. J., AND CHERITON, D. R. Borrowed-virtual-time (bvt)
scheduling: supporting latency-sensitive threads in a general-purpose
scheduler. ACM SIGOPS Operating Systems Review 33, 5 (1999),
261–276.

[16] ETHERNET ALLIANCE. Ethernet Roadmap 2022. https://
ethernetalliance.org/technology/ethernet-roadmap/.

[17] FLOYD, S., AND JACOBSON, V. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on networking 1, 4
(1993), 397–413.

[18] FRIED, J., RUAN, Z., OUSTERHOUT, A., AND BELAY, A. Caladan:
Mitigating interference at microsecond timescales. In Proceedings
of the 14th USENIX Conference on Operating Systems Design and
Implementation (2020), pp. 281–297.

[19] GAO, P., DALLEGGIO, A., XU, Y., AND CHAO, H. J. Gearbox: A
hierarchical packet scheduler for approximate weighted fair queuing.
In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22) (2022), pp. 551–565.

[20] GAO, P. X., NARAYAN, A., KARANDIKAR, S., CARREIRA, J., HAN,
S., AGARWAL, R., RATNASAMY, S., AND SHENKER, S. Network
requirements for resource disaggregation. In 12th USENIX symposium
on operating systems design and implementation (OSDI 16) (2016),
pp. 249–264.

[21] GRANT, S., YELAM, A., BLAND, M., AND SNOEREN, A. C. Smart-
nic performance isolation with fairnic: Programmable networking for
the cloud. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication (2020),
pp. 681–693.

[22] GUO, Z., SHAN, Y., LUO, X., HUANG, Y., AND ZHANG, Y. Clio: A
hardware-software co-designed disaggregated memory system. In Pro-
ceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (2022),
pp. 417–433.

[23] HAECKI, R., MYSORE, R. N., SURESH, L., ZELLWEGER, G., GAN,
B., MERRIFIELD, T., BANERJEE, S., AND ROSCOE, T. How to di-
agnose nanosecond network latencies in rich end-host stacks. In 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 22) (2022), pp. 861–877.

[24] HOEFLER, T., DI GIROLAMO, S., TARANOV, K., GRANT, R. E., AND
BRIGHTWELL, R. spin: High-performance streaming processing in
the network. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2017),
pp. 1–16.

[25] HOFEMEIER, G., AND CHESEBROUGH, R. Introduction to intel aes-ni
and intel secure key instructions. Intel, White Paper 62 (2012).

[26] HØILAND-JØRGENSEN, T., BROUER, J. D., BORKMANN, D.,
FASTABEND, J., HERBERT, T., AHERN, D., AND MILLER, D. The ex-
press data path: Fast programmable packet processing in the operating
system kernel. In Proceedings of the 14th international conference on
emerging networking experiments and technologies (2018), pp. 54–66.

[27] HOSSFELD, T., SKORIN-KAPOV, L., HEEGAARD, P. E., AND
VARELA, M. Definition of qoe fairness in shared systems. IEEE
Communications Letters 21, 1 (2016), 184–187.

[28] HUNTER, A., KENNELLY, C., TURNER, P., GOVE, D., MOSELEY, T.,
AND RANGANATHAN, P. Beyond malloc efficiency to fleet efficiency:
a hugepage-aware memory allocator. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21) (July 2021),
USENIX Association, pp. 257–273.

[29] IBANEZ, S., MALLERY, A., ARSLAN, S., JEPSEN, T., SHAHBAZ, M.,
KIM, C., AND MCKEOWN, N. The nanopu: A nanosecond network
stack for datacenters. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21) (2021), pp. 239–256.

[30] IBANEZ, S., MALLERY, A., ARSLAN, S., JEPSEN, T., SHAHBAZ, M.,
KIM, C., AND MCKEOWN, N. Enabling the reflex plane with the
nanopu. arXiv preprint arXiv:2212.06658 (2022).

[31] INFINIBAND TRADE ASSOCIATION. InfiniBand Specification. https:
//www.infinibandta.org.

13

https://ethernetalliance.org/technology/ethernet-roadmap/
https://ethernetalliance.org/technology/ethernet-roadmap/
https://www.infinibandta.org
https://www.infinibandta.org

[32] IVANOV, A., DRYDEN, N., BEN-NUN, T., LI, S., AND HOEFLER,
T. Data movement is all you need: A case study on optimizing trans-
formers. Proceedings of Machine Learning and Systems 3 (2021),
711–732.

[33] JIANG, Z., YANG, K., FISHER, N., GRAY, I., AUDSLEY, N. C., AND
DONG, Z. Axi-ic rt: Towards a real-time axi-interconnect for highly
integrated socs. IEEE Transactions on Computers 72, 3 (2022), 786–
799.

[34] KAFFES, K., CHONG, T., HUMPHRIES, J. T., BELAY, A., MAZ-
IÈRES, D., AND KOZYRAKIS, C. Shinjuku: Preemptive scheduling
for {µsecond-scale} tail latency. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19) (2019), pp. 345–
360.

[35] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Datacenter rpcs
can be general and fast. arXiv preprint arXiv:1806.00680 (2018).

[36] KHAWAJA, A., LANDGRAF, J., PRAKASH, R., WEI, M., SCHKUFZA,
E., AND ROSSBACH, C. J. Sharing, protection, and compatibility for
reconfigurable fabric with amorphos. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18) (2018),
pp. 107–127.

[37] KOROLIJA, D., ROSCOE, T., AND ALONSO, G. Do os abstractions
make sense on fpgas? In Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation (2020), pp. 991–
1010.

[38] KURTH, A., RÖNNINGER, W., BENZ, T., CAVALCANTE, M.,
SCHUIKI, F., ZARUBA, F., AND BENINI, L. An open-source platform
for high-performance non-coherent on-chip communication. IEEE
Transactions on Computers 71, 8 (2021), 1794–1809.

[39] LE, Y., CHANG, H., MUKHERJEE, S., WANG, L., AKELLA, A.,
SWIFT, M. M., AND LAKSHMAN, T. Uno: Uniflying host and smart
nic offload for flexible packet processing. In Proceedings of the 2017
Symposium on Cloud Computing (2017), pp. 506–519.

[40] LI, Y., MIAO, R., LIU, H. H., ZHUANG, Y., FENG, F., TANG, L.,
CAO, Z., ZHANG, M., KELLY, F., ALIZADEH, M., ET AL. Hpcc:
High precision congestion control. In Proceedings of the ACM Special
Interest Group on Data Communication. 2019, pp. 44–58.

[41] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A., PETER, S.,
AND GUPTA, K. Offloading distributed applications onto smartnics
using ipipe. In Proceedings of the ACM Special Interest Group on Data
Communication. 2019, pp. 318–333.

[42] LIU, M., PETER, S., KRISHNAMURTHY, A., AND PHOTHILIMTHANA,
P. M. E3: Energy-efficient microservices on smartnic-accelerated
servers. In USENIX annual technical conference (2019), pp. 363–378.

[43] MARVELL. LiquidIO-III. https://www.marvell.com/content/
dam/marvell/en/public-collateral/embedded-processors/
marvell-liquidio-III-solutions-brief.pdf.

[44] MICROSOFT. Introduction to Receive Side Scaling.
https://learn.microsoft.com/en-us/windows-hardware/
drivers/network/introduction-to-receive-side-scaling.

[45] MIN, J., LIU, M., CHUGH, T., ZHAO, C., WEI, A., DOH, I. H., AND
KRISHNAMURTHY, A. Gimbal: enabling multi-tenant storage disaggre-
gation on smartnic jbofs. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (2021), pp. 106–122.

[46] MINTURN, D. Nvm express over fabrics. In 11th Annual OpenFabrics
International OFS Developers’ Workshop (2015).

[47] MOGUL, J. C. Tcp offload is a dumb idea whose time has come. In
HotOS (2003), pp. 25–30.

[48] NAMYAR, P., SUPITTAYAPORNPONG, S., ZHANG, M., YU, M., AND
GOVINDAN, R. A throughput-centric view of the performance of
datacenter topologies. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (2021), pp. 349–369.

[49] NETRONOME. Agilio SmartNICs. https://www.netronome.com/
products/smartnic/overview/.

[50] NVIDIA. Bluefield-3 DPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/documents/
datasheet-nvidia-bluefield-3-dpu.pdf.

[51] PETER, S., LI, J., ZHANG, I., PORTS, D. R., WOOS, D., KRISH-
NAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The
operating system is the control plane. ACM Transactions on Computer
Systems (TOCS) 33, 4 (2015), 1–30.

[52] POURHABIBI, A., SUTHERLAND, M., DAGLIS, A., AND FALSAFI,
B. Cerebros: Evading the rpc tax in datacenters. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture
(2021), pp. 407–420.

[53] PREKAS, G., KOGIAS, M., AND BUGNION, E. Zygos: Achieving low
tail latency for microsecond-scale networked tasks. In Proceedings of
the 26th Symposium on Operating Systems Principles (2017), pp. 325–
341.

[54] RESTUCCIA, F., BIONDI, A., MARINONI, M., CICERO, G., AND BUT-
TAZZO, G. Axi hyperconnect: A predictable, hypervisor-level intercon-
nect for hardware accelerators in fpga soc. In 2020 57th ACM/IEEE
Design Automation Conference (DAC) (2020), IEEE, pp. 1–6.

[55] RESTUCCIA, F., PAGANI, M., BIONDI, A., MARINONI, M., AND
BUTTAZZO, G. Is your bus arbiter really fair? restoring fairness in
axi interconnects for fpga socs. ACM Transactions on Embedded
Computing Systems (TECS) 18, 5s (2019), 1–22.

[56] ROSSI, D., CONTI, F., MARONGIU, A., PULLINI, A., LOI, I.,
GAUTSCHI, M., TAGLIAVINI, G., CAPOTONDI, A., FLATRESSE, P.,
AND BENINI, L. Pulp: A parallel ultra low power platform for next
generation iot applications. In 2015 IEEE Hot Chips 27 Symposium
(HCS) (2015), IEEE Computer Society, pp. 1–39.

[57] ROTHENBERGER, B., TARANOV, K., PERRIG, A., AND HOEFLER, T.
ReDMArk: Bypassing RDMA security mechanisms. In 30th USENIX
Security Symposium (USENIX Security 21) (Aug. 2021), USENIX
Association, pp. 4277–4292.

[58] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C.
Inside the social network’s (datacenter) network. SIGCOMM Comput.
Commun. Rev. 45, 4 (Aug. 2015), 123–137.

[59] SINGLA, A., GODFREY, P. B., AND KOLLA, A. High throughput data
center topology design. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), pp. 29–41.

[60] SNYDER, W. Verilator: Open simulation-growing up. DVClub Bristol
(2013).

[61] STEPHENS, B. E., AKELLA, A., AND SWIFT, M. M. Loom: Flexible
and efficient nic packet scheduling. In NSDI (2019), vol. 19, pp. 33–46.

[62] SUN, S., ZHANG, R., YAN, M., AND WU, J. Skv: A smartnic-
offloaded distributed key-value store. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER) (2022), IEEE, pp. 1–
11.

[63] VAHDAT, A., AND MILOJICIC, D. The next wave in cloud systems
architecture. Computer 54, 10 (2021), 116–120.

[64] WANG, Z., HUANG, H., ZHANG, J., WU, F., AND ALONSO, G.
{FpgaNIC}: An {FPGA-based} versatile 100gb {SmartNIC} for
{GPUs}. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22) (2022), pp. 967–986.

[65] WATERMAN, A., LEE, Y., AVIZIENIS, R., PATTERSON, D. A., AND
ASANOVIĆ, K. The risc-v instruction set manual volume ii: Privileged
architecture version 1.9. Tech. Rep. UCB/EECS-2016-129, EECS
Department, University of California, Berkeley, Jul 2016.

[66] WEIBAI, X. J., XU, Y., ELHADDAD, M., RAINDEL, S., PADHYE,
J., AND ZHUO, A. R. L. D. Understanding rdma microarchitecture
resources for performance isolation.

14

https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf

[67] WOODRUFF, J., MOORE, A. W., AND ZILBERMAN, N. Measuring
burstiness in data center applications. In Proceedings of the 2019 Work-
shop on Buffer Sizing (New York, NY, USA, 2019), BS ’19, Association
for Computing Machinery.

[68] YAN, Y., BELDACHI, A. F., NEJABATI, R., AND SIMEONIDOU, D. P4-
enabled smart nic: Enabling sliceable and service-driven optical data
centres. Journal of Lightwave Technology 38, 9 (2020), 2688–2694.

[69] YANG, X., EGGERT, L., OTT, J., UHLIG, S., SUN, Z., AND ANTICHI,
G. Making quic quicker with nic offload. In Proceedings of the
Workshop on the Evolution, Performance, and Interoperability of QUIC
(2020), pp. 21–27.

[70] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN, M.,
LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND ZHANG,
M. Congestion control for large-scale rdma deployments. ACM SIG-
COMM Computer Communication Review 45, 4 (2015), 523–536.

15

	Introduction
	Background and Related Work
	Challenges of Resource Isolation

	Multi-Tenant sNICs
	OSMOSIS
	High-level Overview
	Flexible software control plane
	Hardware data plane
	Discussion

	Implementation
	Implementing OSMOSIS on top of PsPIN
	OSMOSIS Schedulers

	Evaluation
	Hardware Scaling
	Experimental Methodology
	Synthetic Benchmarks
	Datacenter Workloads

	Conclusions

