
EDAN: Towards Understanding Memory-Level Parallelism and
Latency Sensitivity of Real-World Applications

Siyuan Shen
ETH Zürich
Switzerland

siyuan.shen@inf.ethz.ch

Mikhail Khalilov
ETH Zürich
Switzerland

mikhail.khalilov@inf.ethz.ch

Lukas Gianinazzi
ETH Zürich
Switzerland

lukas.gianinazzi@inf.ethz.ch

Timo Schneider
ETH Zürich
Switzerland

timo.schneider@inf.ethz.ch

Marcin Chrapek
ETH Zürich
Switzerland

marcin.chrapek@inf.ethz.ch

Jai Dayal
Samsung
USA

jai.dayal@samsung.com

Manisha Gajbe
Samsung
USA

m.gajbe@samsung.com

Robert Wisniewski
Samsung
USA

r.wisniewski@samsung.com

Torsten Hoefler
ETH Zürich
Switzerland

torsten.hoefler@inf.ethz.ch

Abstract
Resource disaggregation is a promising technique for improving the
efficiency of large-scale computing systems. However, this comes
at the cost of increased memory access latency due to the need to
rely on the network fabric to transfer data between remote nodes.
As such, it is crucial to ascertain an application’s memory latency
sensitivity to minimize the overall performance impact. Existing
tools for measuring memory latency sensitivity often rely on cus-
tom ad-hoc hardware or cycle-accurate simulators, which can be
inflexible and time-consuming. To address this, we present EDAN
(Execution DAG Analyzer), a novel performance analysis tool that
leverages an application’s runtime instruction trace to generate its
corresponding execution DAG. This approach allows us to estimate
the latency sensitivity of sequential programs and investigate the
impact of different hardware configurations. EDAN not only pro-
vides us with the capability of calculating the theoretical bounds
for performance metrics, but it also helps us gain insight into the
memory-level parallelism inherent to any real-world application.
We apply EDAN to applications and benchmarks such as PolyBench,
HPCG, and LULESH to unveil the characteristics of their intrinsic
memory-level parallelism and latency sensitivity.

CCS Concepts
• Computing methodologies→Modeling and simulation; •
Modeling and simulation → Model developement and analy-
sis.

Keywords
Performance modeling, disaggregated memory, latency sensitivity
analysis, simulation, parallel programming

1 Introduction
Modern communication networks offer increasingly high band-
widths, following an exponential trend witnessed by the doubling
of Ethernet switch rates every two years [28]. Yet, those higher
bandwidths are achieved by driving higher frequencies on the links

as well as more complex signaling (e.g, PAM4). This leads to higher
bit error rates in transceivers that are corrected with stronger and
more complex forward error correction (FEC) mechanisms. For
example, the upcoming 800G and 1.6T IEEE P802.3df specifica-
tion [22] supports concatenated and segmented FEC mechanisms
that significantly increase the processing latency. Today’s fast FEC
implementations could be as low as 50ns while future complex FECs
could easily increase that latency by 100ns, leading to per-link hop
traversal latencies of several hundred nanoseconds [28]. Similar
observations apply to all modern networks and continue the trend
toward higher bandwidths at the cost of higher latencies.

Resource disaggregation is a promising technique that has been
recently explored in both the fields of High-Performance Com-
puting (HPC) and datacenter designs. It challenges the traditional
monolithic server architecture by separating heterogeneous re-
sources into discrete units connected by a high-speed network. Not
only does this approach allow flexible and dynamic provisioning
of resources to better match various application requirements, but
it also minimizes the idle time of expensive resources, such as ac-
celerators and CPUs, which greatly reduces the cost and energy
consumption in a large system [46]. While memory disaggrega-
tion networks opt for lower-latency protocols and weaker FEC
protection, they follow the same general trend as Ethernet: higher
bandwidth will likely cause higher latency. Thus, the ratio of band-
width to latency will worsen in the coming generations.

Memory disaggregation is prevalent amongst all the resource ag-
gregation systems [17, 41, 42, 52], as it increases the memory utiliza-
tion across datacenters and helps boost the scalability of memory-
intensive applications, such as data-processing frameworks and
HPC applications [51]. However, growing latencies may limit or
even reduce their efficiency because data access relies on the net-
work fabric [51]. Gao et al. [24] show that additional latency reduces
the performance of data-intensive applications regardless of the
network bandwidth. In essence, the more sensitive an application
is toward memory latency, the more noticeable its performance
degradation will be. To this end, it is crucial to ascertain the memory
latency sensitivity and tolerance of applications so that resource

Anonymous authors

allocations and system design can be done in a way that minimizes
the overall performance impact.

Measuring memory latency sensitivity, however, is a complex
topic on its own. It usually involves artificially injecting latency
into memory accesses, recording the relevant performance met-
rics of applications, and extrapolating application runtime under
varying degrees of additional memory latency. As exemplified by
the works of Patke et al. [51] and Domke et al. [20], one has the
option to depend either on some custom ad-hoc hardware that is
inflexible and difficult to acquire or cycle-accurate simulators that
are extremely time-consuming.

To address these issues, we present EDAN (Execution DAG
Analyzer), a novel performance analysis tool that takes advantage of
the runtime instruction trace of a sequential application to generate
its corresponding execution DAG (eDAG), from which numerous
performance metrics can be computed and analyzed. This approach
reveals an application’s latency-hiding potential by exposing the
true dependencies between instructions, which, with the help of a
CPU and cache model, allows us to estimate the latency sensitivity
of an arbitrary application in a fine-grained manner. In addition,
unlike other approaches that require parameter sweeps and exe-
cuting the same application multiple times, EDAN only needs an
application to be executed once. As soon as a program’s runtime
instruction trace is collected, its eDAG can be generated automati-
cally. At this point, we can easily investigate the impact of different
hardware configurations (e.g., cache sizes, number of memory issue
slots, etc.) by analyzing the eDAG with various parameters.

Under the assumption of an idealized computational model,
EDAN not only provides us with the capability of calculating the
theoretical bounds for performance metrics such as bandwidth uti-
lization and memory latency sensitivity, but it also helps us gain
preliminary insights into the memory-level parallelism inherent to
real-world applications. This, in turn, can guide design decisions
about architectural parameters, such as the number of issue slots
and cache sizes. We apply EDAN to applications and benchmarks
such as PolyBench, HPCG, and LULESH to shed some light on
the characteristics of their memory-level parallelism and latency
sensitivity.

The primary contributions of our paper are as follows:

• We develop EDAN, an experimental tool for theoretical perfor-
mance analysis based entirely on execution DAGs.

• We define a new memory cost model inspired by Brent’s lemma,
which defines upper and lower bounds for the memory access
cost of an eDAG based on the number of memory issue slots.
From this model, we then derive two performance metrics that
quantify the memory latency sensitivity of an application.

• We demonstrate the effectiveness of our tool by applying it to
several common HPC applications as well as benchmarks, and
present the insights gained from this investigation.

1.1 Motivation
To assess the memory latency sensitivity of an application, state-
of-the-art cycle-accurate simulators such as gem5 are commonly
used. Despite its flexibility and relative accuracy, one significant
drawback is its simulation speed. As addressed in [6], compared

with translation-based simulators such as QEMU [4], gem5 is signif-
icantly slower. This was demonstrated in [20], which was claimed
to be the largest cycle-accurate simulations ever conducted with
research-driven gem5. As the authors stated, the benchmarks alone
took multiple months to run, and even then some were still miss-
ing due to gem5-related issues or exceeding the time limit of the
simulation. Despite the complexity and scale of their experiments,
it is still evident that gem5 lacks scalability.

To test the slowdown of gem5 (version 22.1), we ran all the
benchmarks in PolyBench-C (version 3.20). We cross-compiled the
benchmarks into RISC-V binaries and executed them in three differ-
ent environments. RISC-V was chosen as the primary ISA, and the
reason for this is explained later in Section 3. The environments
include (i) the native RISC-V chip, (ii) QEMU user-mode emulation
with a custom instruction tracing plugin, and (iii) gem5. The RISC-
V board we used was a StarFive VisionFive with 2 CPUs and 8GB of
memory. The server on which we executed QEMU and gem5 has an
AMD Ryzen 5 CPU and 16 GB of RAM. The configuration of gem5
is as follows: SE mode, 1 GHz RiscvO3CPU with 16GM DRAM with
50ns latency, 16kB L1i, 64kB Lid caches, and 256 kB L2 cache. As
indicated by the results in Fig 1, the slowdown caused by gem5
is mainly in the rage of 100× and 900×, whereas on average, our
plugin is only 5× to 10× slower than the baseline. As an example, it
takes gem5 around 100 seconds to run the small covariance kernel,
while the same benchmark completes in 4.3 seconds on a RISC-V
board. This discrepancy highlights the scalability issues of using
gem5 to execute large HPC applications or to perform parameter
sweeps for assessing memory latency sensitivity. In contrast, our
EDAN uses QEMU to trace the programs, which is easily an order
of magnitude faster than gem5.

To generate DAGs for a program, one may propose to exploit
memory traces orMPI traces, yet neither is sufficient in this scenario.
A pure memory trace does not contain dependency information
between memory accesses, and an MPI trace is too coarse-grained
for exposing memory-level parallelism. Therefore, our approach is
necessary as it allows us to accurately identify data dependencies
between instructions in the most fine-grained manner.

2 Background
2.1 Execution DAG (eDAG)
An execution directed acyclic graph (eDAG) is a way to represent
the data dependencies between computations. It is also named com-
putation DAG (CDAG) in the literature [36, 37, 69]. In this work, we
opted for the term eDAG to emphasize the dynamic nature of EDAN
and the fact that graphs are generated by executing and tracing
programs. Formally, an eDAG can be expressed as a directed graph
𝐺 = (𝑉 , 𝐸). 𝑉 represents the set of instructions in a program and
edges 𝐸 ⊆ (𝑉 × 𝑉) denote the set of directed edges defining the
data dependencies between instructions [18, 50, 70]. Fig 2 provides
an example of a trivial C program in which three variables a, b, and
c are initialized, and added together to another variable sum. As-
suming that the instruction trace we obtain through the execution
of the said C program is represented by 5 lines of RISC-V assembly,
its eDAG will have 5 vertices where vertex 0, 1, and 3 initialize the
variables respectively. Edges exist, in this scenario, between vertex
2 and 0 as well as 2 and 1 as the instruction add a3,a3,a4 depends

EDAN: Towards Understanding Memory-Level Parallelism and Latency Sensitivity of Real-World Applications

co
va

ria
nc

e
co

rre
la

tio
n

ad
i

fd
td

-2
d

se
id

el
-2

d
ja

co
bi

-2
d-

im
pe

r
3m

m

fd
td

-a
pm

l
sy

r2
k

2m
m

flo
yd

-w
ar

sh
al

l
sy

rk
gr

am
sc

hm
id

t
ge

m
m

dy
np

ro
g

sy
m

m

trm
m

ge
m

ve
r

do
itg

en lu

ge
su

m
m

v

bi
cg

at
ax m
vt

du
rb

in

lu
dc

m
p

tri
so

lv

ch
ol

es
ky

re
g_

de
te

ct
ja

co
bi

-1
d-

im
pe

r10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

E
xp

er
im

en
ta

l R
un

 T
im

e
[s

]

5.
1x

5.
3x

3.
8x

5.
6x

5.
5x 6.
2x

8.
5x

5.
0x

12
.4

x

8.
4x

19
.8

x

15
.3

x

4.
3x

8.
5x

26
.6

x

5.
7x

14
.0

x

6.
6x

17
.3

x

15
.9

x

3.
8x

5.
9x

6.
1x

4.
9x

3.
0x

19
.0

x

3.
9x

15
.1

x

13
.5

x

4.
5x

22
4x

22
7x

21
5x

37
7x

29
0x

23
1x

34
4x

22
8x

46
1x

31
6x

86
9x

60
2x

17
6x

30
7x

80
8x

20
2x

64
9x

28
8x

69
7x

82
5x

17
4x

25
9x

26
2x

19
4x

11
9x

68
7x

16
5x

46
4x

31
2x

73
.2

x

RISC-V Chip QEMU with Tracing (EDAN) gem5

Figure 1: Simulation time of Polybench kernels (small size) using QEMU emulation with instruction tracing (EDAN), and gem5 cycle-accurate
simulation. Runtime on a RISC-V chip is used as the baseline for slowdown calculations.

int a = 1;
int b = 2;
int c = 3;
int sum = a + b + c;

0: li a3,1 1: a4,2 3: li a5,3

2: add a3,a3,a4 4: add a3,a3,a5

Figure 2: A simple C program calculating the sum of 3 variables and
its corresponding eDAG.

on the values both in register a3 and a4. A similar argument can be
applied to construct the dependencies between vertex 2, 3, and 4.

2.2 DAG-based Performance Analysis
The amount of work (𝑇1) refers to the total time needed to execute
every instruction in the program by one processor [18]. Mathemat-
ically, 𝑇1 =

∑
𝑣∈𝑉 𝑡 (𝑣), where 𝑡 is a function that, given any vertex

𝑣 , outputs the time it takes to execute 𝑣 . If every 𝑣 has a unit cost,
𝑇1 equals the total number of vertices in the eDAG. The depth of
an eDAG (𝑇∞), also referred to as span in parallel programming
literature, is the shortest time required to execute all instructions
when an unlimited number of processors are used. It is the aggre-
gate execution time of vertices along the longest path, where the
longest path is computed by weighting each vertex by its execution
time [18]. Such a path is also called the critical path of the eDAG.
The depth can be expressed as𝑇∞ = max𝜋 𝑇 (𝜋) where 𝜋 denotes a
sequence of vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 such that 𝑣1 and 𝑣𝑘 are input and
output vertices respectively, and 𝑇 (𝜋) = ∑

𝑣∈𝜋 𝑡 (𝑣). The degree of
parallelism is the ratio between 𝑇1 and 𝑇∞ and can be regarded as
the average number of vertices that can be executed concurrently
at each step along the critical path of an eDAG. Intuitively, a higher
degree of parallelism indicates that on average, more tasks can
be executed simultaneously, which can result in a faster overall
execution time for programs. The work law claims 𝑇𝑝 ≥ 𝑇1

𝑝 , where
𝑝 is the number of available processors and 𝑇𝑝 is the execution
time of the program. The span law states that 𝑇𝑝 ≥ 𝑇∞. These
two laws express that 𝑇𝑝 cannot be less than the average work
done by each of the 𝑝 processors or the critical path through the
eDAG. The work and span laws together define the lower bound
of 𝑇𝑝 as 𝑇𝑝 ≥ 𝑚𝑎𝑥{𝑇1𝑝 ,𝑇∞}. Given 𝑇1 and 𝑇∞, 𝑝 processors, and a
greedy scheduler, Brent’s lemma states that the execution time of a
program 𝑇𝑝 is upper bounded by 𝑇1−𝑇∞

𝑝 +𝑇∞ [11, 26].

Program Tracing

Input Program RISC-V Binary Tracer

Instruction Trace eDAG Generator

eDAG Generation

eDAG Analysis

eDAG eDAG Analyzer Performance
Metrics

Figure 3: High-level overview of the EDAN toolchain.

3 eDAG Analyzer Toolchain
Fig 3 illustrates the overall structure and the elements involved in
the workflow of the EDAN toolchain. As one can see from the col-
ored blocks, it is composed of three main stages, whose respective
functionalities are tracing programs, generating eDAGs based on
the collected trace, and producing relevant performance metrics
from eDAGs. The principal components and design choices in each
stage are discussed in detail in the following sections.

We chose RISC-V as the target ISA, and the reason is two-fold.
First, RISC-V is relatively simple [67], with fewer instructions to
consider than more intricate ISAs such as x86 [31] and ARM64
[1]. RISC-V instructions are also less complex, in terms of their
addressing modes and flag control. This greatly reduces the com-
plexity of the instruction trace parser in the second stage as well
as the time it takes to prototype the tool. Second, since the RISC-V
project’s inception [2], it has garnered significant interest from
both academia and industry [21], leading to the development of
numerous new extensions and hardware support [3, 63]. We hope
to contribute to the thriving open-source RISC-V community and
the ecosystem through the introduction of EDAN. The modular
design of EDAN allows for easy incorporation of support for other
ISAs by implementing their corresponding trace parsers and eDAG
generators without affecting other parts of the toolchain.

3.1 Program Tracing
The primary goal of the first stage is to obtain a trace of every
assembly instruction that has been executed in a program. To start,
we take the source code of an arbitrary application and compile it
to RISC-V binary. In order to achieve this, we primarily leveraged

Anonymous authors

the RISC-V GNU Toolchain (GCC version 12.2.0) [57] as most users
might not have access to hardware that is capable of support the
RISC-V ISA.

1 #define N 4

2 int __attribute__ ((noinline))

3 kernel(int *arr , int n)

4 {

5 int i, sum = 0;

6 // Perform summation

7 for (i = 0; i < n; ++i)

8 sum += arr[i];

9 return sum;

10 }

Figure 4: Example kernel in C that
sums all elements in a given array.

1 add a3,a0,a1

2 mv a0,zero

3 lw a4 ,0(a5);0 x400800290

4 addi a5,a5 ,4

5 addw a0,a0,a4

6 bne a3,a5 ,-6

7 lw a4 ,0(a5);0 x400800294

8 addi a5,a5 ,4

9 addw a0,a0,a4

10 bne a3,a5 ,-6

Figure 5: Section of the trace
generated from the summa-
tion kernel.

3.1.1 Tracer Many tools can be employed to trace a program, in-
cluding perf [64] or gdb [65]. Nonetheless, they are either too slow
or do not allow the trace output to be customized easily. To this end,
we made the decision to utilize the Tiny Code Generator (TCG) plu-
gin in QEMU (version 7.2.91) user mode [5] as the core of EDAN’s
tracer. This approach has several benefits. Firstly, under user mode,
QEMU is extremely fast as TCG translates target instructions and
syscalls to be compatible with the host without having to emu-
late the OS kernel or the hardware. Secondly, TCG plugins are
C programs that gain access to runtime information and interact
with QEMU via APIs. Hence, by writing our own TCG plugin and
modifying parts of the disassembler, we are able to easily tailor
the output to our desired format and maximize the performance
of program tracing. Lastly, unlike ISA-specific emulators such as
rv8 [16] and banshee [56], similar TCG plugins can be attached
to QEMU emulators with different target ISAs, enabling assembly
traces of various ISAs to be collected.

Our tracer plugin provides users with the flexibility of specifying
the names of particular functions that will be traced or will be
excluded from tracing. This way, only instructions from the most
crucial functions are recorded, while irrelevant function calls, such
as those directed to the runtime library, are ignored. Not only
does this ameliorate the slowdown of tracing, but it also mitigates
the noise from nonessential functions and the possible impact it
may have on later stages. Sometimes this requires adding flags
such as -g or -fno-inline to the compiler, which ensures that the
corresponding symbols can be accessed during tracing.

Fig 4 shows a code that traverses through an integer array arr of
size n and returns the sum of all of its items. It will serve as a running
example throughout the paper and be referred to as the summation
kernel. Fig 5, on the other hand, presents one section of the trace
that was obtained through the execution of the summation kernel.
The instruction trace contains two columns of data separated by
semicolons. The first column shows the assembly instruction, and
the last column, which is not always present, denotes the virtual
address of the data of a memory access operation, such as memory
loads and stores. Data addresses are necessary for generating eDAGs
and incorporating cache models into their analysis.

3.2 eDAG Generation
After program tracing, the next step is to parse the trace and gen-
erate an appropriate eDAG that captures the data dependencies
between instructions. To achieve this, we developed a trace parser
and eDAG generator written in Python.

The principal ideas behind the eDAG generator are presented
by the Python-style pseudocode in Algorithm 1. As the program
iterates through the trace file, it splits each line into the instruction
itself and the data address (or addresses in some rare cases) it ac-
cesses. If an address is present, the cache model is used to simulate
whether the given memory address is a cache hit. The instruction
cost model determines the computation cost (e.g., number of CPU
cycles) of each instruction, and it can be regarded as the function
𝑡 in Section 2.1. Both models are employed to obtain information
that will be essential to computing the performance metrics from
eDAGs. The core algorithm that establishes the dependencies be-
tween vertices is summarized by lines 12 to 17. This procedure
ensures that all data dependencies can be correctly identified while
constructing the eDAG. At the same time, it abstracts away all the
ISA-specific functionalities into the function generate_vertex(),
so that when more ISAs are incorporated into EDAN, it is the only
component that needs to be implemented.

One potential restriction of applying the cache model to the
memory addresses according to the sequential order in the trace is
that when 𝑁 memory accesses are executed, there are in reality 𝑁 !
ways to order them. Distinctive orderings will result in dissimilar
cache miss rates. Therefore, all topological sortings of memory
access vertices should be considered in theory. Nonetheless, that
would be computationally intractable, and thus we decided to only
follow one specific ordering of the memory accesses.

Algorithm 1 Pseudocode for generating eDAGs from trace files
Input: Trace file 𝑡𝑟𝑎𝑐𝑒 , Cache model 𝑐𝑎𝑐ℎ𝑒 with parameters 𝜃 ,

Instruction cost model 𝑡 with parameters 𝜙
1: Initialize new 𝑒𝐷𝐴𝐺 object
2: Initialize a dictionary 𝑐𝑢𝑟𝑟_𝑣𝑠
3: for each 𝑙𝑖𝑛𝑒 in trace do
4: 𝑖𝑛𝑠𝑛, 𝑑𝑎𝑡𝑎_𝑎𝑑𝑑𝑟 = 𝑙𝑖𝑛𝑒.𝑠𝑝𝑙𝑖𝑡 (‘;’)
5: 𝑣 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑖𝑛𝑠𝑛, 𝑑𝑎𝑡𝑎_𝑎𝑑𝑑𝑟)
6: if 𝑑𝑎𝑡𝑎_𝑎𝑑𝑑𝑟 is not None then
7: 𝑣 .𝑐𝑎𝑐ℎ𝑒_ℎ𝑖𝑡 = 𝑐𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝑑𝑎𝑡𝑎_𝑎𝑑𝑑𝑟)
8: 𝑣 .𝑡𝑖𝑚𝑒 = 𝑡 .𝑔𝑒𝑡_𝑐𝑜𝑠𝑡 (𝑣)
9: 𝑒𝐷𝐴𝐺.𝑎𝑑𝑑 (𝑣)
10: 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 = 𝑣 .𝑡𝑎𝑟𝑔𝑒𝑡𝑠

11: 𝑑𝑒𝑝_𝑣𝑎𝑙𝑠 = 𝑣 .𝑑𝑒𝑝_𝑣𝑎𝑙𝑠
12: for each 𝑣𝑎𝑙 in 𝑑𝑒𝑝_𝑣𝑎𝑙𝑠 do
13: 𝑑𝑒𝑝_𝑣 = 𝑐𝑢𝑟𝑟_𝑣𝑠 [𝑣𝑎𝑙]
14: if 𝑑𝑒𝑝_𝑣 exists then
15: 𝑒𝐷𝐴𝐺.𝑎𝑑𝑑_𝑒𝑑𝑔𝑒 (𝑑𝑒𝑝_𝑣, 𝑣)
16: for each 𝑡𝑎𝑟𝑔𝑒𝑡 in 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 do
17: 𝑐𝑢𝑟𝑟_𝑣𝑠 [𝑡𝑎𝑟𝑔𝑒𝑡] = 𝑣
18: return 𝑒𝐷𝐴𝐺

EDAN: Towards Understanding Memory-Level Parallelism and Latency Sensitivity of Real-World Applications

𝑇! = 6

𝑇"
𝑇!

= 1.6

(a) Example eDAG where non-true dependencies are dashed arrows.

𝑇! = 5

𝑇"
𝑇!

= 2

(b) The same eDAG where only true dependencies are present.

Figure 6: Removing non-true data dependencies can help reduce the depth of the eDAG and expose potential parallelism. A critical path in
both graphs is highlighted.

3.2.1 Exposing Potential Parallelism There are four categories of
data dependencies, which include true dependencies (read-after-
write dependencies or RAW for short), anti-dependencies (write-
after-read dependencies or WAR for short), output dependencies
(write-after-write dependencies or WAW for short), and input de-
pendencies (read-after-read or RAR for short) [39]. We noticed that
considering non-true data dependencies in eDAGs greatly hinders
the discovery of potential instruction-level parallelism that is in-
trinsic to an application [49]. This can be primarily attributed to the
fact that in a realistic microarchitecture, only a limited number of
registers are available. Hence, false dependencies, especially WAW,
can be seen as introduced by the register allocation algorithm in a
compiler [40] as a means to cope with this constraint.

To demonstrate how this approach exposes potential instruction-
level parallelism from the trace of a purely sequential program,
we present Fig 6. The two subfigures show a segment of an eDAG
generated from a matrix multiplication kernel. The difference is
that in Fig 6a, both WAW and RAW dependencies are kept and
WAW dependencies are denoted by dashed arrows, while in Fig 6b
WAW dependencies are removed. Assuming that all vertices have
unit cost, the work 𝑇1 in both cases is equal to 10, yet in the first
scenario, 𝑇∞ is 6 whereas 𝑇∞ is 5 in the second scenario. In this
specific example, as vertex 6 no longer need to wait for vertex 2 to
free register a3, all load instructions can be executed at the same
time. Thus, by simply ignoring false data dependencies, we have
increased the average degree of parallelism from 1.6 to 2.

One limitation of our current approach is that it cannot fully
uncover the potential instruction-level parallelism when register
spilling happens. To be more precise, depending on the register
pressure of the ISA and the design of the compiler, the values of
some variables will be spilled to the main memory and stored back
throughout the execution of the program [14]. This process creates
additional dependencies between instructions and decreases the
maximum degree of parallelism the program is capable of achiev-
ing given enough registers. Our toolchain does not detect register
spilling, and hence not all parallelism can be recovered.

Fig 7 demonstrates the eDAG generated from the summation
kernel trace with a 4-item input array. The eDAG shows that register
a0 stores sum, and vertices on the right add each array item to the
sum. On the left, register a5 increments as the index into the array,
serving as the address for the next item to load. Branch instruction
vertices (e.g., 7, 11, 15) do not overwrite register or memory address
values. As eDAG only considers data dependencies and ignores
control flow dependencies, no other vertices depend on them.

0: slli a1,a1,2

2: add a3,a0,a1

1: mv a5,a0

4: lw a4,0(a5)5: addi a5,a5,4

3: mv a0,zero

6: addw a0,a0,a47: bne a3,a5,-6

11: bne a3,a5,-6

15: bne a3,a5,-6

19: bne a3,a5,-6

8: lw a4,0(a5)9: addi a5,a5,4

10: addw a0,a0,a412: lw a4,0(a5)13: addi a5,a5,4

14: addw a0,a0,a416: lw a4,0(a5)17: addi a5,a5,4

18: addw a0,a0,a4

Figure 7: eDAG generated from the trace of the summation kernel for
n=4. Red vertices represent memory accesses, white vertices denote
other instructions. Edges represent true dependencies.

3.3 eDAG Analysis
To achieve one of the primary objectives of this work, which is
to obtain performance metrics including the theoretical memory
latency sensitivity of any given program, the generated eDAGs are
passed to the eDAG analyzer. Before discussing the details of the
metrics, we first define an appropriate cost model.

3.3.1 Memory Cost Model To mitigate the effects of the high la-
tency and low bandwidth of memory accesses, CPUs employ two
orthogonal techniques. First, multiple memory access instructions
can be pipelined and executed in parallel [25]. This can increase
the throughput of the system as long as the memory-level paral-
lelism is high enough. Second, caches can reduce the number of
memory accesses that need to access RAM, which improves the
average latency as long as the program has good locality [8]. We
extract a metric that takes into account memory-level parallelism
and locality from our eDAGs. We assign each memory access that
goes to RAM a constant access latency of 𝛼 and we assume that
𝑚 memory accesses can be issued in parallel. This means that is-
suing 𝑠 memory accesses in parallel costs ⌈ 𝑠𝑚 ⌉𝛼 . In contrast, for a
chain of 𝑠 dependent accesses to RAM, the cost is 𝑠𝛼 . In addition
to the memory cost, we consider the total computational cost of
non-memory-access operations (e.g., arithmetic, and cache access)
in an eDAG to be a constant 𝐶 that is independent of 𝛼 and pro-
portional to the work. A vertex that accesses RAM (and is hence a
cache miss) is a memory access vertex.

In general, we subdivide the eDAG into layers, which we define
recursively: The first layer consists of memory access vertices that
are not reachable from any other memory access vertices. The 𝑖 + 1-
th layer consists of memory access vertices that are reachable from
vertices in the 𝑖-th layer without going through another memory
access vertex. The number of layers is thememory depth D and the
total number of memory access vertices in the eDAG is the memory
workW. LetW𝑖 be the number of memory access vertices in level

Anonymous authors

𝑖 . Based on these variables, the memory cost𝑀𝑚,𝛼 is bounded by

max
(
D, W

𝑚

)
𝛼 ≤ 𝑀𝑚,𝛼 ≤

(
W −D
𝑚

+ D
)
𝛼 . (1)

which can be obtained in similar reasoning as the work/span laws
and Brent’s lemma: For the lower bounds, notice that memory ac-
cesses that depend on each other must execute one after the other.
Consider a path that contains the largest number of memory ac-
cess vertices in the eDAG. Its length is D, which yields the lower
bound of D𝛼 . For the second lower bound, notice that at most𝑚
memory accesses can occur in parallel. As there are W memory
access vertices, the bound W

𝑚 follows. For the upper bound, ob-
serve that by definition of a layer, the next layer can execute as
soon as the previous layer has finished and there are no memory
dependencies within a layer, i.e., every memory access in a given
layer can be issued in parallel. Hence, the memory cost to execute
layer 𝑖 is

⌈
W𝑖

𝑚

⌉
𝛼 and the total memory cost is bounded by the

sum
∑D
𝑖=1

⌈
W𝑖

𝑚

⌉
𝛼 over the layers. Then, the inequality follows by

using the rule ⌈ 𝑛𝑚 ⌉ = ⌊𝑛−1𝑚 ⌋ + 1, which holds for positive 𝑛 and
𝑚. To be more precise, Equation 1 describes the theoretical upper
and lower bounds of the execution time of a program if its eDAG
only contains memory access vertices while all other operations
are ignored. Note that variables D, W, 𝐶 , 𝑀𝑚,𝛼 and 𝑇𝑚,𝛼 are all
functions of a given eDAG 𝐺 . If 𝐺 is clear from the context, it is
omitted from the expressions. Now, if we take into account the
constant computation cost of non-memory-access vertices we can
bound the total theoretical cost of the eDAG, 𝑇𝑚,𝛼 , for a given𝑚
and 𝛼 as:

max
(
D, W

𝑚

)
𝛼 +𝐶 ≤ 𝑇𝑚,𝛼 ≤

(
W −D
𝑚

+ D
)
𝛼 +𝐶 . (2)

For simplicity, this cost model ignores the interactions between
memory access vertices and other instructions. Nevertheless, it still
provides us with an effective estimation of the impact of both the
memory access latency and the number of available memory issue
slots without having to develop a complex model that considers
all the intricacies of the underlying architecture of the machine on
which the program is run.

3.3.2 Memory Latency Sensitivity In mathematics, sensitivity anal-
ysis (SA) aims to investigate how the set of 𝑁 input variables
𝑥 = {𝑥1, 𝑥2, . . . 𝑥𝑁 } influence the output 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝐷 } of
a function 𝑦 = 𝑔(𝑥) where 𝑔 : R𝑁 → R𝐷 [10, 61]. There are two
general approaches to conducting SA: local and global. Although
global SA provides a more comprehensive view of the effect of each
parameter in 𝑥 , local SA is easy to implement and is not as com-
putationally demanding. However, local SA has its limitations. For
instance, when the model is nonlinear, the results produced can be
heavily biased [59, 60]. Assuming that function 𝑔 is differentiable,
derivative-based local SA can be performed by taking the partial
derivative of 𝑦 with respect to the 𝑖-th input 𝑥𝑖 and expressed as
𝑆𝑖 =

𝜕𝑦
𝜕𝑥𝑖

���
𝑥0
, where 𝑆𝑖 is the sensitivity measure of 𝑥𝑖 and 𝑥0 ∈ R𝑛

is the fixed point at which the derivative is evaluated [9, 53].
To derive memory latency sensitivity based on eDAGs, we refer

to the theory regarding derivative-based local SA. In essence, we can
take one of the bounds of 𝑇𝑚,𝛼 , and compute its partial derivative
with respect to 𝛼 . It is evident that the derivative expresses the

𝑣!

𝑣"

𝑣#

𝑣$
𝒲 = 3
𝒟 = 3

(a) Example eDAG of a latency-
sensitive application.

𝑣!

𝑣"

𝑣# 𝑣$

𝒲 = 3
𝒟 = 1

(b) Example eDAG of a latency-
insensitive application.

Figure 8: eDAGs generated from a latency-sensitive vs. latency-
insensitive application, red vertices denote memory accesses.

quantity of how much 𝑇𝑚,𝛼 changes as the memory access latency
varies, and can be utilized to directly gauge the memory latency
sensitivity of an application. Moreover, considering that the model
is linear, we also minimize the influence of potential bias from local
SA [55, 60]. Since we are interested in the worst-case performance
of an application, we opted for the upper bound of𝑇𝑚,𝛼 , and define
the absolute memory latency sensitivity of an eDAG 𝜆 as

𝜆 =

𝜕

((
W−D
𝑚 + D

)
𝛼 +𝐶

)
𝜕𝛼

=
W −D
𝑚

+ D (3)

Fig 8 demonstrates the features in an eDAG that distinguishes a
latency-sensitive application from a latency-insensitive one. Given
the same amount of memory workW, eDAG 𝐺1 in Fig 8a should
be more sensitive to memory latency due to the fact that it has all
the memory access vertices clustered along the critical path, while
eDAG 𝐺2 in Fig 8b should be more tolerant to it as it only has a
memory depth of 1. Assuming𝑚 = 3 and 𝛼 = 1, if we increment
𝛼 to 2, 𝑇𝑚,𝛼 (𝐺1) will be increased by 3 while 𝑇𝑚,𝛼 (𝐺2) will only
be increased by 1. Now, if we limit𝑚 to 1, the cost increase will
be 3 for both. From this example, it can be seen that the effect of
depth on the overall memory latency sensitivity is constrained by
the number of available memory issue slots. This characteristic is
summarized perfectly by Equation 3. After re-arranging, we have
𝜆 = 1

𝑚W+ (1− 1
𝑚)D, which signifies that given a fixed𝑚 andW,

𝜆 grows with D. IfW and D stay constant,𝑚 can be interpreted
as the variable that controls what proportionsW and D should be
counted towards the total computation cost. The larger𝑚 becomes,
the more weight is given to D and vice-versa.

Despite being a useful metric, 𝜆 on its own does not fully describe
how an application’s performance will be affected in comparison
to a baseline. If an application is already slower than other pro-
grams, introducing additional memory access latency could lead
to a comparatively larger decrease in performance on an absolute
scale. However, the slowdown may not be as significant relative
to its baseline performance. Conversely, adding memory latency
to a fast program may only result in a minor increase in execution
time on an absolute scale, but the relative impact on performance
could be substantial. To this end, we formulate the relative memory
latency sensitivity Λ of an eDAG as

Λ =
𝜆

𝜆𝛼0 +𝐶
(4)

where 𝛼0 is the baseline latency of memory access operations. In-
tuitively, Λ represents the relative performance change of an ap-
plication with respect to a specific baseline. Unlike 𝜆, it produces a
normalized metric between 0 and 1, and by taking into account 𝐶 ,
Λ implicitly shows the percentage of a program’s total computation
cost that is attributed to memory accesses.

EDAN: Towards Understanding Memory-Level Parallelism and Latency Sensitivity of Real-World Applications

for (k = 0; k < _PB_N; k++) {
for (j = k + 1; j < _PB_N; j++)

A[k][j] = A[k][j] / A[k][k];
for (i = k + 1; i < _PB_N; i++)

for (j = k + 1; j < _PB_N; j++)
A[i][j] = A[i][j] - A[i][k] * A[k][j];

}

Figure 9: Data movement over time of the lu kernel. The dataset size
is 64. No cache model is used. Memory access instructions take 200
cycles, other instructions have unit costs. 𝜏 is set to 1 cycle.

3.3.3 Bandwidth Utilization In addition to memory latency sensi-
tivity, one can also approximate a program’s average bandwidth
utilization and visualize its data movement over time with the help
of eDAGs. To do so, we first formulate the critical path length 𝑇∞
exactly as described in Section 2.2, and𝑤 (𝑣) as the amount of data
moved between the CPU and the main memory in bytes when 𝑣 is
processed. Then, under the assumption of a greedy scheduler and
that an infinite number of instructions can be performed in parallel,
the average bandwidth utilization 𝐵 can be expressed as

𝐵 =

∑
𝑣∈𝑉 𝑤 (𝑣)
𝑇∞

(5)

Note that 𝐵 should be regarded as a reference to the theoretical
maximum average bandwidth that can be achieved rather than an
estimate of the actual bandwidth usage.

We then define 𝑆 (𝑣), and 𝐹 (𝑣) as the start time and finish time
of vertex 𝑣 respectively. Given an eDAG 𝐺 = (𝑉 , 𝐸), 𝑆 (𝑣) and 𝐹 (𝑣)
can be calculated as follows

𝑆 (𝑣) =
{
0 , if 𝑣 ∈ 𝐼
max {𝐹 (𝑢) | (𝑢, 𝑣) ∈ 𝐸} , otherwise

(6)

𝐹 (𝑣) = 𝑆 (𝑣) + 𝑡 (𝑣) (7)
where 𝐼 is the set of input vertices of𝐺 (i.e. vertices whose in-degree
is 0), and 𝑡 is a predefined function that outputs the execution time of
𝑣 . Now, we can stratify the eDAG into ⌈𝑇∞𝜏 ⌉ phases given a specified
time interval 𝜏 , and the total datamovement𝑈𝑖 within phase 𝑖 can be
expressed as𝑈𝑖 =

∑
𝑣∈𝐾 𝑤 (𝑣) where𝐾 = {𝑣 |𝑆 (𝑣) ≤ 𝜏 ·𝑖 ≤ 𝐹 (𝑣)} is a

set containing all vertices that are being run in phase 𝑖 . By assigning
reasonable execution times to different types of instructions and
adjusting the value of 𝜏 , we can obtain sensible estimations of the
data movement pattern of an application at various time resolutions.

Fig 9 illustrates the data movement plot generated from the
trace of LU decomposition. We can clearly see that the peaks in the
diagram delineate each iteration. Furthermore, the data movement
pattern conforms with the intuition behind LU decomposition as
the outer loop in the source code shows that the algorithm updates
the upper triangular matrix from top to bottom, and the amount
of transferred data decreases. Through this example, we showcase
the possibility of using eDAGs to identify hidden data bursts in a
program. More importantly, it is demonstrated that not only can
eDAG be applied to theoretical analysis, but it is also capable of
producing practical performance metrics.

3mm

2mm

symm

gemm

syr2k

trmm
syrk

gemver
gesummv
doitgen
bicg
mvt
atax
trisolv
cholesky

Figure 10: Impact of increasedmemory access latency on the runtime
of 15 PolyBench linear algebra benchmarks.

3mm
2mm

symm
gemm

syr2k
trm

m syrk
gemver

gesummv
doitgen bicg mvt

atax
tris

olv

cholesky
0

5

10

15

E
xe

cu
tio

n
Ti

m
e

R
an

k

gem5
EDAN

Figure 11: Comparison of memory latency sensitivity rankings of
benchmarks based on gem5 data and 𝜆.

4 Validation of EDAN
Despite the incorporation of an instruction cost model and the
assignment of execution time to vertices, EDAN by no means pro-
vides a direct estimation of the actual runtime of a program or
the slowdown incurred by additional memory latency. Thus, to
validate the memory latency sensitivity metrics and to assess the
efficacy of EDAN, another approach has to be taken. The technique
we opted for involves measuring the performance degradation of
various applications, ranking them based on the perceived impact
of memory latency, and then comparing the applications’ ranks to
those acquired by analyzing their eDAGs. To gather data for the
first step, we had to resort to gem5 as we lacked hardware that
would easily allow artificial memory access delays to be injected.

Considering the significant latency overhead of gem5, we chose
a set of linear algebra benchmarks with small dataset size from
PolyBench to be evaluated. The configuration of gem5 is as fol-
lows: SE mode, 1 GHz RiscvO3CPU with 16GM DRAM with 50ns
latency, 16kB L1i and 64kB Lid caches. For simplicity, we did not
attempt to emulate a multi-node system with remote memory, as
performing parameter sweeps in gem5 for numerous parameters
and applications will be excessively time-consuming. Instead, we
varied the DRAM latency for all memory access instructions from
the baseline to 300𝑛𝑠 at 5𝑛𝑠 increment. We used PolyBench’s inter-
nal time reporting functionality to measure only the time of the
computation kernel so that the time taken for initialization and
cleanup is excluded [23].

4.1 Validation of 𝜆
In Fig 10, we display the runtime of 15 linear algebra benchmarks in
gem5 plotted against increasing DRAM latencies. To generate the
ranking, we calculated the average execution time for each across
all tested latencies. We sorted them from highest to lowest, with
the first kernel being the most latency sensitive. To produce the

Anonymous authors

𝒲/𝐶 ≥ 0.3 𝒲/𝐶 < 0.3

Figure 12: Comparison of memory latency sensitivity rankings of
benchmarks based on gem5 data and Λ.

ranking with EDAN, we began by recording traces for the main
computational kernels in the benchmarks, while disregarding extra-
neous functions like array initialization and cleanup. This ensured
that the code section we traced would correspond accurately with
the timing data provided by gem5. We generated the eDAG for
each benchmark using the same parameters for the cache model
as those used in gem5, in order to mirror the setting in gem5. We
then calculated their respective 𝜆 value with a value of 4 for𝑚 and
sorted them in descending order.

Fig 11 plots the comparison of rankings from gem5 and the 𝜆
metric. As can be observed, 6 out of 15 benchmarks’ rankings match
perfectly with the ground truth produced by gem5, which includes
the 2 most latency-sensitive as well as the 3 least latency-sensitive
kernels. For those that are misaligned, the ranks differ by a max-
imum of 2, and the average difference between the two rankings
is only 0.93. The ability to precisely identify benchmarks on both
ends of the latency sensitivity spectrum and having a small average
discrepancy suggest that 𝜆 can be employed as a reliable metric
to compare the potential increase in execution time of multiple
applications when additional memory latency is introduced. Addi-
tionally, we demonstrate the effectiveness of the EDAN toolchain
in enhancing the productivity of performance engineers. It took
around 24 hours to collect the runtime data for all the benchmarks
in gem5, while the entire process only took less than an hour with
the assistance of EDAN. It is important to note that the value of
𝜆 does not correspond to the magnitude of the execution time in-
crease. In other words, unlike the slopes of the trendlines in Fig 10,
if 𝜆𝑎 from application 𝐴 is twice as large as 𝜆𝑏 from application 𝐵,
it does not necessarily indicate the runtime increase of 𝐴 will be
twice that of 𝐵 in most cases.

4.2 Validation of Λ
To test the validity of Λ, we use the same data collected with gem5.
Following the same methodology outlined in the previous section,
we determined the relative slowdown of each benchmark’s runtime
when compared to its baseline (i.e. 50𝑛𝑠 DRAM latency) across all
DRAM latencies. We ranked the benchmarks accordingly based on
the average relative slowdown. For all benchmarks, we chose 𝛼0
to be 50 and the total number of non-memory-access vertices in
an eDAG to be 𝐶 . We observed that, in this case, the actual values
of 𝛼0 and 𝐶 only affect the magnitude of Λ, and do not alter the
rankings of the benchmarks.

Fig 12 presents the comparison of ranks based on the two ap-
proaches. However, the results here are significantly poorer than
those in Fig 11. Specifically, only one ranking based on Λ conforms

to the ground truth, and the average discrepancy is 2.67. Neverthe-
less, we noticed that albeit not perfectly, EDAN predicted the top 4
most latency-sensitive benchmarks based on relative slowdown us-
ing Λ. Therefore, we sought to investigate the circumstances under
which Λ would give a reasonable estimate. To do so, we computed
the value of W

𝐶
, which denotes the ratio between memory work

and the number of non-memory-access instructions. We discovered
that the top 4 kernels all have a W

𝐶
ratio larger than 0.3. Based on

this finding, it can be extrapolated that in order for Λ to provide a
sensible estimate, W

𝐶
needs to be above a certain threshold. This

can be attributed to the fact that our metric does not accurately
model the cost of non-memory access instructions. It overlooks
the interactions between memory access vertices and all other in-
structions, making it impossible to know when computations and
memory accesses overlap or depend on each other. Since the value
of𝐶 cannot be correctly computed, it follows that as the proportion
of memory access vertices becomes smaller, the larger the deviation
between the calculated Λ and its actual value. Despite its weakness,
Λ is still a valuable metric for identifying memory-intensive bench-
marks that could benefit from performance optimization strategies
such as caching or prefetching.

5 Case Studies of Benchmarks and Applications
Now that we have validated our model and assessed the strengths
and weaknesses of EDAN, we will proceed to apply it to a set of
applications and benchmarks as case studies. This will enable us
to gain an in-depth understanding of their potential memory-level
parallelism and latency sensitivity.

5.1 PolyBench-C Suite
Although some experiments have already been performed on Poly-
Bench in the previous section, analyzing the memory workW and
memory depth of D of individual benchmarks can still provide
further insight into memory-level parallelism, making it the first
set of benchmarks to be examined. We varied the input data size 𝑁
for linear algebra benchmarks and investigated its impact on W
and D of their eDAGs. The effect of 𝑁 on W is relatively uninfor-
mative, the relationship between them can simply be characterized
by polynomial functions with different degrees according to the
algorithms [37]. On the other hand, the connection between 𝑁
and D is more compelling. Fig 13 plots the values of D against
𝑁 , and it can be seen that 8 out of 15 benchmarks have a constant
memory depth despite a changing 𝑁 . We attempted to categorize
the benchmarks by the types of algorithms they perform, yet it
was unsuccessful since algorithms that should belong to the same
category, such as trmm and 2mm, exhibit different behaviors for D.

Upon closer inspection, we made the following discovery: Data-
oblivious applications should always have constant memory
depths under the assumptions of an ideal architecture. This
is due to the fact that, by definition, in a data-oblivious application,
both the memory access pattern and the control flow, are indepen-
dent of the data itself [47]. Thus, memory loads that depend on
each other, such as those found in pointer chasing, should not oc-
cur. If infinite registers are available to store all values, the longest
chain of dependent memory accesses would be first loading a value
from memory and storing it back after all dependent operations

EDAN: Towards Understanding Memory-Level Parallelism and Latency Sensitivity of Real-World Applications

trmm

cholesky

atax
trisolv
bicg

gesummv
symm

gemver

syrk
3mm
mvt
2mm
gemm
doitgen

Figure 13: Impact of data sizes on thememory depth D of PolyBench
linear algebra benchmarks. Cache models were not used.

have been executed, which makes the memory depth constant. An
example would be the eDAG of the summation kernel in Fig 7. We
can deduce visually that there is only one memory access vertex
along the critical path regardless of the input size. Intuitively, it
signifies that all elements from the array can be loaded at the same
time, which shows significant memory-level parallelism. However,
if we inspect it from a traditional work and depth perspective, this
is all hidden as the depth grows linearly with the input size. In
essence, through D andW, we expose the potential memory-level
parallelism in a program that is otherwise not easily detectable.

1 /* trmm: B := alpha*A '*B, A triangular */
2 for (i = 1; i < _PB_NI; i++)
3 for (j = 0; j < _PB_NI; j++)
4 for (k = 0; k < i; k++)
5 B[i][j] += alpha * A[i][k] * B[j][k];

Figure 14: Section of source code from trmm.

Despite being data-oblivious, around half of the tested bench-
marks still have a linear memory depth, which is primarily caused
by register spilling as discussed in Section 3.2.1. To demonstrate
this, we present in Fig 14 a section of the source code from trmm.
In this case, trmm has the fastest-growing memory depth among
all benchmarks. From its source code, we see that the compiler is
unable to keep each B[i][j] in a designated register as there are
too many distinct values loaded between its first and last access. For
instance, when the kernel size is 4, 15 unique values are loaded from
memory between the first and last access of B[1][0]. Since the
compiler does not keep all of them in registers, the value B[1][0]
will be “spilled" back to memory. This, in turn, creates extraneous
dependencies between loads and stores.

5.2 HPCG
HPCG (High-Performance Conjugate Gradient) is a benchmark
for ranking computer systems, and it centers around solving a
large sparse linear system with preconditioned conjugate gradient
(PCG) method [27, 66]. The benchmark consists of two main phases:
the setup phase and the PCG iteration phase. The setup phase
constructs the sparse matrix and the multigrid hierarchy, while
the PCG iteration phase performs multiple iterations of the PCG
algorithm to compute an approximate solution of the equation. The
version of the program was 3.1.

To analyze the program’s performance, we focused on the CG
function in the PCG iteration phase and ignored the setup phase
entirely. We chose a data size of 16 and an iteration number of
50. Tracing took approximately 35 seconds and produced a file of

5.5𝐺𝐵, containing over 210 million lines of instructions. The trace
file was processed on a server with Intel Xeon X7550 CPUs, 1 TB
of memory, and a PERC H700 hard disk. It took around 7 hours to
generate and analyze the eDAG. We collected performance metrics
from the eDAG with various cache configurations.𝑚 and 𝛼0 were
set to be 4 and 1 respectively, and the value of 𝐶 is the number
of non-memory access vertices. We specified the cost of memory
accesses to be 200 cycles, while all other instructions had a unit cost.
The cache model we used was a write-through 2-way associative
L1 cache with 64 bytes cache line and LRU as the eviction strategy.
The results are summarized in Table 1.

Cache Size W D 𝜆 Λ B [GB/s]

No Cache 106151255 73703 26593091 0.1462 46.5
32 kB 11200012 (89.4%) 45102 (38.8%) 2833830 (89.3%) 0.0112 (92.3%) 8.1
64 kB 10833505 (89.8%) 43502 (41.0%) 2741003 (89.7%) 0.0108 (92.6%) 8.1

Table 1: Impact of cache sizes on the performance metrics in HPCG.
The numbers in parenthesis show the percentage reduction com-
pared to the baseline.

One can see from the data that, in this specific scenario, caching
plays a significant role in mitigating the memory latency sensitivity
of HPCG. Compared with the baseline in which no cache was avail-
able, we see a reduction of around 90% for W when 32kB of cache
is used, which, as one may expect, results in a substantial decrease
in both 𝜆, Λ, and the average bandwidth utilization 𝐵. However,
increasing the cache size further leads to diminishing returns as
doubling the cache size does not yield a noticeable improvement in
performance metrics. This can be explained by the fact that a small
dataset was used, which could likely fit within the cache, at which
point, only the unavoidable cold misses remain.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
CPU Cycles 1e7

10
1

10
1

10
3

D
at

a
Tr

an
sf

er
re

d
[k

B
]

Without cache
Cache size: 32kB
Cache size: 64kB

Figure 15: Data movement over time of HPCG with different cache
sizes. 𝜏 was set to 100 cycles.

We visualize the data movement over time of the three config-
urations in Fig 15. The pattern exhibited in the plot adheres to
our intuitive understanding of the algorithm as a large amount of
data is loaded at the start, and the repetitive small bursts of data
movement coincide with each PCG iteration. There are 50 peaks
in the plot, which matches perfectly with the number of iterations
we defined. Additionally, the impact of the cache is also visible as
both the height and width of the orange and green lines are shorter
compared with the baseline.

5.3 LULESH 2.0
LULESH (Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics) 2.0 is a proxy application that simulates the effect of a
blast wave in a physical domain through time-stepping followed by
calculation of the time constraint. The code uses an unstructured
hexahedral mesh with two centerings, where the element center-
ing stores thermodynamic variables, whereas the nodal centering

Anonymous authors

stores kinematic values. The algorithm consists of two major steps:
advancing the node quantities, followed by advancing the element
quantities [33, 34]. To better understand LULESH, we traced its
kernel function LagrangeLeapFrog with a data size of 1000 and
an iteration number of 10. The tracing process took 3.8 seconds
and produced a 1.2GB file with 49 million lines of instructions. It
was then processed on the same server as described in the previous
section and computed the performance metrics with an identical
set of parameters. The results are presented in Table 2.

Cache Size W D 𝜆 Λ B [GB/s]

No Cache 18852125 53776 4753363 0.1370 13.6
32 kB 5389537 (71.4%) 13083 (75.7%) 1357197 (71.4%) 0.0303 (77.9%) 15.8
64 kB 5279800 (72.0%) 13055 (75.7%) 1329741 (72.0%) 0.0296 (78.4%) 15.5

Table 2: Impact of cache sizes on the performancemetrics in LULESH.

Compared with the data from HPCG, caching helps mitigate the
memory latency sensitivity of LULESH in a similar fashion, as both
W and D are decreased by more than 70% relative to the baseline.
One difference is that the majority of memory vertices are removed
from the critical path, resulting in a significant reduction in D.
Hence, the critical path length𝑇∞ is also much shorter, which leads
to a slight boost in 𝐵.

0.0 0.2 0.4 0.6 0.8 1.0
CPU Cycles 1e7

10
1

10
1

10
3

D
at

a
Tr

an
sf

er
re

d
[k

B
]

Without cache
Cache size: 32kB
Cache size: 64kB

Figure 16: Data movement over time of LULESH with different cache
sizes. 𝜏 was set to 100 cycles.

Fig 16 visualizes the data movement pattern of the computational
kernel in LULESH, revealing its behavior during execution. The
peaks in the plot indicate the start of a new time step, while the flat
sections in between correspond to the calculation of nodal forces
and the advancement of element quantities [33].

6 Related Work
Performance Modeling Tools Computer architects often rely

on simulators to evaluate the impact of architectural changes. Un-
surprisingly, a plethora of simulators exist [6, 58, 62], capable of
simulating architectures at various levels of details. Clearly, there
is a trade-off between simulation accuracy and speed. While most
of these tools simulate architecture components, others [62] rely
on binary instrumentation [43] to trace events during execution
and estimate latency. All simulation tools have in common that
they force the user to do parameter sweeps to evaluate the impact
of an architectural change on a specific application. This further
increases the computational costs of relying on simulators to judge
the impact of different parameters on performance. In this work, we
rely on the gem5 simulator only to validate the accuracy of the pre-
dictions made by the proposed model. Constructing a graph-based
representation of the program is a common approach in order to
minimize the overhead of tracing and instrumentation [13, 54].

A possible solution is to construct models that abstract away
most of the details of a computer, and instead, parameterize them
using key performance metrics such as computational and memory
bandwidth as in the original roofline model [68]. Naturally, such
models are often extended with more parameters [29, 30, 44, 45].
While insightful, they only predict the performance of simple kernel,
not an application made up of parts exposing different behaviors.
Another issue is when modeling performance is finding suitable pa-
rameters to instantiate the model. Two other model families which
target the differences in latencies for different memory accesses
are the external memory model proposed in the balance principles
for algorithm-architecture co-design [19] and variations on the
red-blue pebble game [32].

This can be solved by combining modeling with tracing, i.e., the
model is instantiated using a trace of an application. An example
of this is the work by Cabezas and Püschel [13] in which kernel
execution is traced, translated into an execution DAG, which is
then scheduled according to micro-architectural constraints. This
ultimately allows placing the kernel in a roofline plot. The method-
ology of this work is very similar to ours, however, we do not rely
on the LLVM toolchain but directly on RISC-V binaries, and the
model we instantiate from the eDAG is not a variant of the roofline
model. Instead, we combine this approach with our own model
which is inspired by the work-span model [7], which allows us to
reach conclusions about the parallelism in memory accesses.

Memory Latency Sensitivity Analysis The prior work onmem-
ory latency sensitivity analysis of workloads can be split into two
categories: offline and online analysis. In offline analysis [13, 15, 20,
38, 48] the goal is to learn more about specific workloads or and
how these workloads will react to changes in the machines they
are executed on. While some offline analysis work [20, 48] relies on
architectural simulation, others [13, 15] use a trace-based approach
similar to this work, but either limit the user to a specific compiler
toolchain [13] or do not offer a global view of the critical path in
the application [15]. In online analysis, the goal is to improve the
performance of a system by changing parameters on the fly [12, 35].

7 Limitations and Future Work
EDAN is capable of efficiently producing performance metrics for
a wide range of programs. Nonetheless, as a purely experimental
tool, it has a few notable limitations.

The drawbacks of the current memory cost model has already
been uncovered in Section 4. The lack of a more accurate CPU and
scheduler model causes EDAN to mispredict the relative computa-
tion cost of non-memory access instructions, which in turn reduces
the accuracy of Λ. Developing a more comprehensive model will
undoubtedly help ameliorate this discrepancy. However, this would
likely introduce more computation overhead in the toolchain, and
undermine the simplicity and efficiency of the current model.

As discussed extensively in Sections 3.2.1 and 5.1, EDAN is con-
strained both by the compiler and the underlying architecture to
fully expose the memory-level parallelism intrinsic to a program.
Techniques such as register spilling cause extraneous dependen-
cies between memory accesses and greatly hinder the discovery
of memory-level parallelism. Consequently, it would be beneficial
to explore the possibility of extending compilers and emulators

EDAN: Towards Understanding Memory-Level Parallelism and Latency Sensitivity of Real-World Applications

to enable the generation and execution of code with an unlimited
number of registers, which could unlock EDAN’s full potential.

Parallel programs are not yet supported by EDAN due to the
sheer complexity of determining data dependencies in the presence
of atomic operations, synchronization primitives, cache coherence
protocols as well as message passing. These paradigms involve intri-
cate interactions betweenmultiple threads and processes that create
convoluted data dependencies that cannot be easily inferred from
program execution traces. Therefore, implementing support for
parallel programs in EDAN would require significant algorithmic
and structural changes to the existing toolchain.

Since EDAN relies heavily on the execution trace, it is vulnerable
to input that only triggers a particular execution path, potentially
generating misleading results. Moreover, the size of input data can
also impact the outcome of performance analysis depending on the
compiler. Therefore, to ensure accurate and generalized results, it
would be beneficial to vary the input of a program.

Although EDAN ismuchmore efficient compared to cycle-accurate
simulators, its scalability can still be improved. One possible method
is to store and parse traces in a binary format. This would reduce
both the storage requirements and the computation needed for
eDAG analysis. Additionally, EDAN should employ multiple pro-
cesses so as to maximize the processing speed of large graphs.

Currently, EDAN relies on GCC with standard extensions (i.e.,
MAFD) to generate binaries for the riscv64 ISA. It would be valu-
able to explore the impact of using different compilers and riscv64
extensions, (e.g., vector extension), on program eDAGs. By doing
so, we can broaden our understanding and generalize our findings.

8 Conclusion
In this work, we present EDAN, a novel experimental toolchain
that exploits the execution DAG generated from the runtime trace
of a sequential program to calculate theoretical performance met-
rics, such as memory latency sensitivity and average bandwidth
utilization. To complement the toolchain, we developed a simple
yet powerful memory cost model inspired by Brent’s theorem and
derivative-based sensitivity analysis. Based on this model, we de-
rived two metrics 𝜆 and Λ, which can be utilized to efficiently
quantify and rank the memory latency sensitivity of applications.

By comparing our theoretical metrics with the experimental
data collected from gem5, we tested the effectiveness of EDAN and
understood the limitations of our model. Case studies were then
conducted on several HPC benchmarks and applications, which
include PolyBench, HPCG, and LULESH. Through the analysis
of the performance metrics, we gained a deeper insight into the
memory-level parallelism of an application, and more importantly,
we demonstrate the practicality of EDAN in analyzing real-life
applications.

As latency continues to increase in modern networks, efficient
identification of application latency sensitivity is becoming increas-
ingly crucial. With the development of EDAN, we have provided a
tool to aid in this area, and we hope to inspire further advancements
in this field.

References
[1] ARM Limited. 2022. Arm Architecture Reference Manual for A-profile architecture.

ARM Ltd. https://developer.arm.com/documentation/ddi0487/latest/
[2] Krste Asanović and David A. Patterson. 2014. Instruction Sets Should Be Free: The

Case For RISC-V. Technical Report UCB/EECS-2014-146. EECS Department, Uni-
versity of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-146.html

[3] MohammadHossein AskariHemmat, Theo Dupuis, Yoan Fournier, Nizar El
Zarif, Matheus Cavalcante, Matteo Perotti, Frank Gurkaynak, Luca Benini,
Francois Leduc-Primeau, Yvon Savaria, and Jean-Pierre David. 2023. Quark:
An Integer RISC-V Vector Processor for Sub-Byte Quantized DNN Inference.
arXiv:2302.05996 [cs.AR]

[4] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference (Anaheim,
CA) (ATEC ’05). USENIX Association, USA, 41.

[5] Alex Bennée, Peter Maydell, Paolo Bonzini, and Christoph Müllner. 2022. qemu.
https://github.com/qemu/qemu/blob/v7.2.0/docs/devel/tcg-plugins.rst.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[7] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3
(1996), 85–97.

[8] Bob Boothe and Abhiram Ranade. 1992. Improved Multithreading Techniques
for Hiding Communication Latency in Multiprocessors. In Proceedings of the
19th Annual International Symposium on Computer Architecture (Queensland,
Australia) (ISCA ’92). Association for Computing Machinery, New York, NY, USA,
214–223. https://doi.org/10.1145/139669.139729

[9] Emanuele Borgonovo. 2008. Sensitivity Analysis of Model Output with In-
put Constraints: A Generalized Rationale for Local Methods. Risk Analy-
sis 28, 3 (2008), 667–680. https://doi.org/10.1111/j.1539-6924.2008.01052.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2008.01052.x

[10] Emanuele Borgonovo and Elmar Plischke. 2016. Sensitivity analysis: A review of
recent advances. European Journal of Operational Research 248, 3 (2016), 869–887.
https://doi.org/10.1016/j.ejor.2015.06.032

[11] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions.
J. ACM 21, 2 (apr 1974), 201–206. https://doi.org/10.1145/321812.321815

[12] Rodrigo Bruno, Duarte Patricio, José Simão, Luis Veiga, and Paulo Ferreira. 2019.
Runtime object lifetime profiler for latency sensitive big data applications. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1–16.

[13] Victoria Caparrós Cabezas and Markus Püschel. 2014. Extending the roofline
model: Bottleneck analysis with microarchitectural constraints. In 2014 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, 222–231.

[14] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and PeterW.Markstein. 1981. Register allocation via coloring. Computer
Languages 6, 1 (1981), 47–57. https://doi.org/10.1016/0096-0551(81)90048-5

[15] Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan, and Thomas
Willhalm. 2015. Quantifying the performance impact of memory latency and
bandwidth for big data workloads. In 2015 IEEE International Symposium on
Workload Characterization. IEEE, 213–224.

[16] M. Clark. 2017. rv 8 : a high performance RISC-V to x 86 binary translator.
[17] Marcin Copik, Marcin Chrapek, Alexandru Calotoiu, and Torsten Hoefler. 2022.

Software Resource Disaggregation for HPC with Serverless Computing. https:
//htor.inf.ethz.ch/publications/img/2022_copik_serverless_hpc_report.pdf

[18] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
2001. Introduction to Algorithms (2nd ed.). McGraw-Hill Higher Education.

[19] Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chan-
dramowlishwaran, and RichardWVuduc. 2011. Balance Principles for Algorithm-
Architecture Co-Design. HotPar 11 (2011), 9–9.

[20] Jens Domke, Emil Vatai, Balazs Gerofi, Yuetsu Kodama, Mohamed Wahib, Artur
Podobas, Sparsh Mittal, Miquel Pericàs, Lingqi Zhang, Peng Chen, Aleksandr
Drozd, and Satoshi Matsuoka. 2022. At the Locus of Performance: A Case Study
in Enhancing CPUs with Copious 3D-Stacked Cache. https://doi.org/10.48550/
ARXIV.2204.02235

[21] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald
Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen
Berekovic. 2021. A Comparative Survey of Open-Source Application-Class
RISC-V Processor Implementations. In Proceedings of the 18th ACM International
Conference on Computing Frontiers (Virtual Event, Italy) (CF ’21). Association
for Computing Machinery, New York, NY, USA, 12–20. https://doi.org/10.1145/
3457388.3458657

[22] John D’Ambrosia. 2022. IEEE P802.3df™ Defines Architecture Holistically
to Achieve 800 Gb/s and 1.6 Tb/s Ethernet. IEEE Standards Association
(2022). https://standards.ieee.org/beyond-standards/ieee-p802-3df-defines-a-
holistic-architectural-approach/

https://developer.arm.com/documentation/ddi0487/latest/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://arxiv.org/abs/2302.05996
https://github.com/qemu/qemu/blob/v7.2.0/docs/devel/tcg-plugins.rst
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/139669.139729
https://doi.org/10.1111/j.1539-6924.2008.01052.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2008.01052.x
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1145/321812.321815
https://doi.org/10.1016/0096-0551(81)90048-5
https://htor.inf.ethz.ch/publications/img/2022_copik_serverless_hpc_report.pdf
https://htor.inf.ethz.ch/publications/img/2022_copik_serverless_hpc_report.pdf
https://doi.org/10.48550/ARXIV.2204.02235
https://doi.org/10.48550/ARXIV.2204.02235
https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
https://standards.ieee.org/beyond-standards/ieee-p802-3df-defines-a-holistic-architectural-approach/
https://standards.ieee.org/beyond-standards/ieee-p802-3df-defines-a-holistic-architectural-approach/

Anonymous authors

[23] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/polybench.html

[24] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-
ments for Resource Disaggregation. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, USA, 249–264.

[25] Michael Golden and Trevor N. Mudge. 1993. Hardware Support for Hiding Cache
Latency. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
9ccb22c1e276804247c1f581a78b9716d66c7a73

[26] John L. Gustafson. 2011. Brent’s Theorem. Springer US, Boston, MA, 182–185.
https://doi.org/10.1007/978-0-387-09766-4_80

[27] Michael Allen Heroux and Jack. Dongarra. 2013. Toward a newmetric for ranking
high performance computing systems. (6 2013). https://doi.org/10.2172/1089988

[28] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alverson, Mark Gris-
wold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyan Shen, Abdul
Kabbani, Moray McLaren, and Steve Scott. 2023. Datacenter Ethernet and RDMA:
Issues at Hyperscale. arXiv:2302.03337 [cs.NI]

[29] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. 2013. Cache-aware roofline
model: Upgrading the loft. IEEE Computer Architecture Letters 13, 1 (2013), 21–24.

[30] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. 2016. Beyond the roofline:
Cache-aware power and energy-efficiency modeling for multi-cores. IEEE Trans.
Comput. 66, 1 (2016), 52–58.

[31] Intel Corporation. 2022. Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation. https://www.felixcloutier.com/x86/

[32] Hong Jia-Wei and Hsiang-Tsung Kung. 1981. I/O complexity: The red-blue
pebble game. In Proceedings of the thirteenth annual ACM symposium on Theory
of computing. 326–333.

[33] I Karlin. 2012. LULESH Programming Model and Performance Ports Overview.
(12 2012). https://doi.org/10.2172/1059462

[34] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. 1–9 pages. https://asc.llnl.gov/sites/asc/files/
2021-01/lulesh2.0_changes1.pdf

[35] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010.
Thread cluster memory scheduling: Exploiting differences in memory access
behavior. In 2010 43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE, 65–76.

[36] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu,
Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, and Torsten Hoefler.
2021. Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower
Bounds for Statically Analyzable Programs. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures (Virtual Event, USA)
(SPAA ’21). Association for Computing Machinery, New York, NY, USA, 328–339.
https://doi.org/10.1145/3409964.3461796

[37] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raffaele
Solcà, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal
parallel matrix-matrix multiplication. arXiv:1908.09606 [cs.CC]

[38] Oliver Lenke, Richard Petri, Thomas Wild, and Andreas Herkersdorf. 2021.
PEPERONI: Pre-Estimating the Performance of Near-Memory Integration. In
The International Symposium on Memory Systems. 1–6.

[39] Zhen Li, Ali Jannesari, and Felix Wolf. 2013. Discovery of Potential Parallelism in
Sequential Programs. In 2013 42nd International Conference on Parallel Processing.
1004–1013. https://doi.org/10.1109/ICPP.2013.119

[40] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. 1999. Evaluation
of Algorithms for Local Register Allocation. In Compiler Construction, Stefan
Jähnichen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 137–152.

[41] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. SIGARCH Comput. Archit. News 37, 3 (jun 2009),
267–278. https://doi.org/10.1145/1555815.1555789

[42] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun Bae, and Yanzhao Wu.
2019. Memory Disaggregation: Research Problems and Opportunities. In 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
1664–1673. https://doi.org/10.1109/ICDCS.2019.00165

[43] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[44] Diogo Marques, Aleksandar Ilic, Zakhar A Matveev, and Leonel Sousa. 2020.
Application-driven cache-aware roofline model. Future Generation Computer
Systems 107 (2020), 257–273.

[45] Diogo Marques, Aleksandar Ilic, and Leonel Sousa. 2021. Mansard roofline
model: Reinforcing the accuracy of the roofs. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems 6, 2 (2021), 1–23.

[46] George Michelogiannakis, Benjamin Klenk, Brandon Cook, Min Yee Teh,
Madeleine Glick, Larry Dennison, Keren Bergman, and John Shalf. 2022. A
Case For Intra-Rack Resource Disaggregation in HPC. ACM Trans. Archit. Code
Optim. 19, 2, Article 29 (mar 2022), 26 pages. https://doi.org/10.1145/3514245

[47] John C. Mitchell and Joe Zimmerman. 2014. Data-Oblivious Data Structures. In
31st International Symposium on Theoretical Aspects of Computer Science (STACS
2014) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 25), Ernst W.
Mayr and Natacha Portier (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 554–565. https://doi.org/10.4230/LIPIcs.STACS.2014.
554

[48] Richard Murphy. 2007. On the effects of memory latency and bandwidth on su-
percomputer application performance. In 2007 IEEE 10th International Symposium
on Workload Characterization. IEEE, 35–43.

[49] Onur Mutlu. 2021. Out-of-Order Execution. https://safari.ethz.ch/digitaltechnik/
spring2021/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2021-
lecture16-out-of-order-execution-beforelecture.pdf

[50] Cristóbal A. Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. 2014. A Survey
on Parallel Computing and its Applications in Data-Parallel Problems Using GPU
Architectures. Communications in Computational Physics 15, 2 (2014), 285–329.
https://doi.org/10.4208/cicp.110113.010813a

[51] Archit Patke, Haoran Qiu, Saurabh Jha, Srikumar Venugopal, Michele Gazzetti,
Christian Pinto, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2022. Evaluating
Hardware Memory Disaggregation under Delay and Contention. In 2022 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
1221–1227. https://doi.org/10.1109/IPDPSW55747.2022.00210

[52] Ivy Peng, Roger Pearce, and Maya Gokhale. 2020. On the Memory Underuti-
lization: Exploring Disaggregated Memory on HPC Systems. In 2020 IEEE 32nd
International Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD). 183–190. https://doi.org/10.1109/SBAC-PAD49847.2020.00034

[53] Francesca Pianosi, Keith Beven, Jim Freer, JimW. Hall, Jonathan Rougier, David B.
Stephenson, and Thorsten Wagener. 2016. Sensitivity analysis of environmental
models: A systematic review with practical workflow. Environmental Modelling
& Software 79 (2016), 214–232. https://doi.org/10.1016/j.envsoft.2016.02.008

[54] Brian Paul Railing. 2015. Collecting and representing parallel programs with high
performance instrumentation. Ph. D. Dissertation. Georgia Institute of Technol-
ogy.

[55] Patrick M. Reed, Antonia Hadjimichael, Keyvan Malek, Tina Karimi, Chris R.
Vernon, Vivek Srikrishnan, Rohini S. Gupta, David F. Gold, Ben Lee, Klaus Keller,
Travis B. Thurber, and Jennie S. Rice. 2022. Addressing Uncertainty in Multisector
Dynamics Research. Zenodo. https://doi.org/10.5281/zenodo.6110623

[56] Samuel Riedel, Fabian Schuiki, Paul Scheffler, Florian Zaruba, and Luca Benini.
2021. Banshee: A Fast LLVM-Based RISC-V Binary Translator. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 1–9. https://doi.
org/10.1109/ICCAD51958.2021.9643546

[57] RISC-V Collaborative Project. Accessed 2023. RISC-V GNU Toolchain. https:
//github.com/riscv-collab/riscv-gnu-toolchain.

[58] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey, Ron Oldfield,
Marlo Weston, Rolf Risen, Jeanine Cook, Paul Rosenfeld, Elliot Cooper-Balis,
et al. 2011. The structural simulation toolkit. ACM SIGMETRICS Performance
Evaluation Review 38, 4 (2011), 37–42.

[59] Andrea Saltelli. 1999. Sensitivity analysis: Could better meth-
ods be used? Journal of Geophysical Research: Atmospheres 104,
D3 (1999), 3789–3793. https://doi.org/10.1029/1998JD100042
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1998JD100042

[60] Andrea Saltelli, Ksenia Aleksankina, William Becker, Pamela Fennell, Federico
Ferretti, Niels Holst, Sushan Li, and Qiongli Wu. 2017. Why So Many Published
Sensitivity Analyses Are False. A Systematic Review of Sensitivity Analysis
Practices. arXiv:1711.11359 [stat.AP]

[61] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis
in Practice: A Guide to Assessing Scientific Models. Wiley. https://books.google.
ch/books?id=NsAVmohPNpQC

[62] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475–486.

[63] Paul Scheffler, Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini.
2020. Indirection Stream Semantic Register Architecture for Efficient Sparse-
Dense Linear Algebra. arXiv:2011.08070 [cs.AR]

[64] Anup Sharma and Davidlohr Bueso. 2023. Linux kernel profiling with perf.
https://perf.wiki.kernel.org/index.php/Tutorial. Accessed: March 23, 2023.

[65] Richard Stallman, Roland Pesch, and Stan Shebs. 2010. Debugging with gdb.
https://www.eecs.umich.edu/courses/eecs373/readings/Debugger.pdf

[66] Thomas Sterling, Matthew Anderson, and Maciej Brodowicz. 2018. Chapter 4
- Benchmarking. In High Performance Computing, Thomas Sterling, Matthew
Anderson, and Maciej Brodowicz (Eds.). Morgan Kaufmann, Boston, 115–140.
https://doi.org/10.1016/B978-0-12-420158-3.00004-6

[67] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2014.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[68] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/polybench.html
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9ccb22c1e276804247c1f581a78b9716d66c7a73
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9ccb22c1e276804247c1f581a78b9716d66c7a73
https://doi.org/10.1007/978-0-387-09766-4_80
https://doi.org/10.2172/1089988
https://arxiv.org/abs/2302.03337
https://www.felixcloutier.com/x86/
https://doi.org/10.2172/1059462
https://asc.llnl.gov/sites/asc/files/2021-01/lulesh2.0_changes1.pdf
https://asc.llnl.gov/sites/asc/files/2021-01/lulesh2.0_changes1.pdf
https://doi.org/10.1145/3409964.3461796
https://arxiv.org/abs/1908.09606
https://doi.org/10.1109/ICPP.2013.119
https://doi.org/10.1145/1555815.1555789
https://doi.org/10.1109/ICDCS.2019.00165
https://doi.org/10.1145/3514245
https://doi.org/10.4230/LIPIcs.STACS.2014.554
https://doi.org/10.4230/LIPIcs.STACS.2014.554
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2021-lecture16-out-of-order-execution-beforelecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2021-lecture16-out-of-order-execution-beforelecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2021-lecture16-out-of-order-execution-beforelecture.pdf
https://doi.org/10.4208/cicp.110113.010813a
https://doi.org/10.1109/IPDPSW55747.2022.00210
https://doi.org/10.1109/SBAC-PAD49847.2020.00034
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.5281/zenodo.6110623
https://doi.org/10.1109/ICCAD51958.2021.9643546
https://doi.org/10.1109/ICCAD51958.2021.9643546
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://doi.org/10.1029/1998JD100042
https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1998JD100042
https://arxiv.org/abs/1711.11359
https://books.google.ch/books?id=NsAVmohPNpQC
https://books.google.ch/books?id=NsAVmohPNpQC
https://arxiv.org/abs/2011.08070
https://perf.wiki.kernel.org/index.php/Tutorial
https://www.eecs.umich.edu/courses/eecs373/readings/Debugger.pdf
https://doi.org/10.1016/B978-0-12-420158-3.00004-6
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

EDAN: Towards Understanding Memory-Level Parallelism and Latency Sensitivity of Real-World Applications

[69] Xiaoyang Zhang, Junmin Xiao, and Guangming Tan. 2020. I/O Lower Bounds
for Auto-tuning of Convolutions in CNNs. arXiv:2012.15667 [cs.LG]

[70] Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, and Wanli Chang. 2020. DAG
Scheduling and Analysis on Multiprocessor Systems: Exploitation of Parallelism

and Dependency. In 2020 IEEE Real-Time Systems Symposium (RTSS). 128–140.
https://doi.org/10.1109/RTSS49844.2020.00022

https://arxiv.org/abs/2012.15667
https://doi.org/10.1109/RTSS49844.2020.00022

	Abstract
	1 Introduction
	1.1 Motivation

	2 Background
	2.1 Execution DAG (eDAG)
	2.2 DAG-based Performance Analysis

	3 eDAG Analyzer Toolchain
	3.1 Program Tracing
	3.2 eDAG Generation
	3.3 eDAG Analysis

	4 Validation of EDAN
	4.1 Validation of
	4.2 Validation of

	5 Case Studies of Benchmarks and Applications
	5.1 PolyBench-C Suite
	5.2 HPCG
	5.3 LULESH 2.0

	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	References

